Caspase-Dependent Cell Death and HDAC4 Translocation Following Microsecond Pulsed Electric Field (μsPEF) Exposure in MCF-7 Breast Cancer Cells

IF 1.8 3区 生物学 Q3 BIOLOGY
Zahra Safaei, Gary L. Thompson
{"title":"Caspase-Dependent Cell Death and HDAC4 Translocation Following Microsecond Pulsed Electric Field (μsPEF) Exposure in MCF-7 Breast Cancer Cells","authors":"Zahra Safaei,&nbsp;Gary L. Thompson","doi":"10.1002/bem.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Breast cancer is the second-leading cancer-related death among women. Survival rates decrease from 99% for localized stages of breast tumors to only 27% when distant metastases develop. Increased invasiveness and proliferation of breast cancer cells correlate with overexpression of an enzymatic coregulator of gene expression, histone deacetylase-4 (HDAC4). If HDAC4 is cleaved into two halves by another enzyme called caspase, one-half of HDAC4 goes into the nucleus of the cell where it promotes a highly regulated form of cellular self-destruction known as apoptosis. Caspases are activated by fast rises in calcium ion (Ca<sup>2+</sup>) concentrations inside cells, which can be initiated via plasma membrane electropermeabilization induced by microsecond pulsed electric fields (µsPEFs) applied to cells positioned between electrodes. However, the MCF-7 breast cancer cell line is deficient in caspase-3, which is the type of caspase predominantly responsible for cleavage of HDAC4. In this in vitro study, we demonstrate µsPEF exposure elicits HDAC4 translocation independently of caspase activity in MCF-7 cells. Yet, µsPEF-induced MCF-7 cell death remains dependent on Ca<sup>2+</sup> electropermeabilization and caspase activity. Bioelectromagnetics. 00:00–00, 2025. © 2025 © 2025 Bioelectromagnetics Society.</p></div>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.70009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is the second-leading cancer-related death among women. Survival rates decrease from 99% for localized stages of breast tumors to only 27% when distant metastases develop. Increased invasiveness and proliferation of breast cancer cells correlate with overexpression of an enzymatic coregulator of gene expression, histone deacetylase-4 (HDAC4). If HDAC4 is cleaved into two halves by another enzyme called caspase, one-half of HDAC4 goes into the nucleus of the cell where it promotes a highly regulated form of cellular self-destruction known as apoptosis. Caspases are activated by fast rises in calcium ion (Ca2+) concentrations inside cells, which can be initiated via plasma membrane electropermeabilization induced by microsecond pulsed electric fields (µsPEFs) applied to cells positioned between electrodes. However, the MCF-7 breast cancer cell line is deficient in caspase-3, which is the type of caspase predominantly responsible for cleavage of HDAC4. In this in vitro study, we demonstrate µsPEF exposure elicits HDAC4 translocation independently of caspase activity in MCF-7 cells. Yet, µsPEF-induced MCF-7 cell death remains dependent on Ca2+ electropermeabilization and caspase activity. Bioelectromagnetics. 00:00–00, 2025. © 2025 © 2025 Bioelectromagnetics Society.

MCF-7乳腺癌细胞暴露于微秒脉冲电场(μsPEF)后caspase依赖性细胞死亡和HDAC4易位
乳腺癌是女性癌症相关死亡的第二大杀手。乳房肿瘤局部期的存活率从99%下降到远处转移期的27%。乳腺癌细胞侵袭性和增殖的增加与基因表达的酶促调节因子组蛋白去乙酰酶-4 (HDAC4)的过度表达有关。如果HDAC4被另一种叫做caspase的酶切成两半,一半的HDAC4进入细胞核,在那里它促进一种高度调节的细胞自我毁灭形式,即细胞凋亡。caspase是由细胞内钙离子(Ca2+)浓度的快速上升激活的,这可以通过施加在电极之间的细胞上的微秒脉冲电场(µsPEFs)诱导的质膜电渗透来启动。然而,MCF-7乳腺癌细胞系缺乏caspase-3,这是一种主要负责HDAC4切割的caspase。在这项体外研究中,我们证明了µsPEF暴露会在MCF-7细胞中独立于caspase活性引起HDAC4易位。然而,µspef诱导的MCF-7细胞死亡仍然依赖于Ca2+电渗透和caspase活性。生物电磁学。00:00 - 00,2025。©2025©2025生物电磁学学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信