Investigating the Impact of Copper and Zinc Doping in High-Entropy Prussian Blue Analogues for Na-Ion Batteries: From Material Analysis to Device Fabrication

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Pappu Naskar, Pallav Mondal, Biplab Biswas, Sourav Laha, Anjan Banerjee
{"title":"Investigating the Impact of Copper and Zinc Doping in High-Entropy Prussian Blue Analogues for Na-Ion Batteries: From Material Analysis to Device Fabrication","authors":"Pappu Naskar,&nbsp;Pallav Mondal,&nbsp;Biplab Biswas,&nbsp;Sourav Laha,&nbsp;Anjan Banerjee","doi":"10.1002/ente.202401733","DOIUrl":null,"url":null,"abstract":"<p>High-entropy Prussian blue analogues (HE-PBAs) show great promise as active materials in Na-ion batteries, particularly due to their multimetallic synergism that enhances electrochemical performance. This study explores two HE-PBAs: Na<sub>2</sub>Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Cu<sub>0.2</sub>Fe(CN)<sub>6</sub> (HE-PBA-1) and Na<sub>2</sub>Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Zn<sub>0.2</sub>Fe(CN)<sub>6</sub> (HE-PBA-2). Both crystallize in monoclinic (<i>P</i>2<sub>1</sub><i>/n</i>) symmetry, but HE-PBA-1, with Cu, exhibits a lower bandgap, lower Na-ion diffusion barrier, higher [Fe(CN)<sub>6</sub>] vacancy, and smaller particle size compared to HE-PBA-2 with Zn. These factors result in higher power capability for HE-PBA-1 due to its enhanced electronic conductivity and Na-ion diffusivity. Additionally, its higher [Fe(CN)<sub>6</sub>] vacancy and smaller particle size offer more electrochemical active sites, improving energy characteristics. A Na-ion full cell with HE-PBA-1 as the positive electrode and a mixed-metallic sodium–copper–iron oxide (NaCuFe-Oxide) as the negative electrode in a hydrogel electrolyte is assembled. It achieves a specific capacity of 94 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup>, an energy density of 70 Wh kg<sup>−1</sup> at 74 W kg<sup>−1</sup>, a power density of 375 W kg<sup>−1</sup> at 57 Wh kg<sup>−1</sup>, and excellent durability with 89% capacity retention over 500 cycles at 200 mA g<sup>−1</sup> within a 0–2 V window. A 5 V/3 mAh prototype device is tested with a solar charging module to evaluate its real-life feasibility.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401733","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy Prussian blue analogues (HE-PBAs) show great promise as active materials in Na-ion batteries, particularly due to their multimetallic synergism that enhances electrochemical performance. This study explores two HE-PBAs: Na2Mn0.2Fe0.2Co0.2Ni0.2Cu0.2Fe(CN)6 (HE-PBA-1) and Na2Mn0.2Fe0.2Co0.2Ni0.2Zn0.2Fe(CN)6 (HE-PBA-2). Both crystallize in monoclinic (P21/n) symmetry, but HE-PBA-1, with Cu, exhibits a lower bandgap, lower Na-ion diffusion barrier, higher [Fe(CN)6] vacancy, and smaller particle size compared to HE-PBA-2 with Zn. These factors result in higher power capability for HE-PBA-1 due to its enhanced electronic conductivity and Na-ion diffusivity. Additionally, its higher [Fe(CN)6] vacancy and smaller particle size offer more electrochemical active sites, improving energy characteristics. A Na-ion full cell with HE-PBA-1 as the positive electrode and a mixed-metallic sodium–copper–iron oxide (NaCuFe-Oxide) as the negative electrode in a hydrogel electrolyte is assembled. It achieves a specific capacity of 94 mAh g−1 at 100 mA g−1, an energy density of 70 Wh kg−1 at 74 W kg−1, a power density of 375 W kg−1 at 57 Wh kg−1, and excellent durability with 89% capacity retention over 500 cycles at 200 mA g−1 within a 0–2 V window. A 5 V/3 mAh prototype device is tested with a solar charging module to evaluate its real-life feasibility.

Abstract Image

研究铜和锌掺杂对钠离子电池高熵普鲁士蓝类似物的影响:从材料分析到器件制造
高熵普鲁士蓝类似物(HE-PBAs)作为钠离子电池的活性材料具有很大的应用前景,特别是由于其多金属协同作用可以提高电化学性能。本研究探索了两种HE-PBAs: Na2Mn0.2Fe0.2Co0.2Ni0.2Cu0.2Fe(CN)6 (HE-PBA-1)和Na2Mn0.2Fe0.2Co0.2Ni0.2Zn0.2Fe(CN)6 (HE-PBA-2)。两者均呈单斜晶型(P21/n)对称结晶,但与含Zn的HE-PBA-2相比,含Cu的HE-PBA-1具有更小的带隙、更低的na离子扩散势垒、更高的[Fe(CN)6]空位和更小的粒径。这些因素导致HE-PBA-1由于其增强的电子导电性和na离子扩散能力而具有更高的功率能力。此外,其较高的[Fe(CN)6]空位和较小的粒径提供了更多的电化学活性位点,改善了能量特性。在水凝胶电解质中组装了以HE-PBA-1为正极,以混合金属钠-铜-氧化铁(NaCuFe-Oxide)为负极的钠离子全电池。它在100ma g - 1时的比容量为94 mAh g - 1,在74w kg - 1时的能量密度为70 Wh kg - 1,在57wh kg - 1时的功率密度为375 W kg - 1,并且在0 - 2v的窗口内,在200ma g - 1下超过500次循环,其容量保持率为89%。一个5 V/3 mAh的原型设备与太阳能充电模块进行测试,以评估其现实可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信