{"title":"Galfenol-Based Magnetostrictive Energy Harvester for Structural Health Monitoring of Bridges Under Vehicular Loads","authors":"Shamik Dasadhikari, Debabrata Roy, Sotoshi Yamada","doi":"10.1002/ente.202402039","DOIUrl":null,"url":null,"abstract":"<p>The objective of this work is to create a magnetostrictive energy harvester (MEH) using Galfenol to assess the structural health of bridges under automotive loads. The MEH is subjected to controlled vibrations—square, triangular, and sinusoidal waves—using a modified cantilever configuration. It generates a voltage difference across the pickup coil terminals using a Galfenol transducer as the magnetostrictive material, which is then converted into steady DC voltage via a rectification cum warning circuit. The effectiveness of the energy harvester has been confirmed through an experimental setup and expanded to monitor the state of a prototype bridge. The MEH produces varying voltages in response to vibrations in its surroundings, allowing for the differentiation between the healthy condition and the declining condition of bridges. Additionally, an adaptive neuro-fuzzy inference system enables the creation of predictive models based on the existing experimental data. This provides vital insights into the viability of real-time monitoring and early detection of structural anomalies in bridge structures. This study demonstrates the effectiveness of utilizing Galfenol-based magnetostrictive energy harvesting to enhance the safety and efficiency of infrastructure maintenance. This technology additionally enhances the durability and long-term viability of transportation networks.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this work is to create a magnetostrictive energy harvester (MEH) using Galfenol to assess the structural health of bridges under automotive loads. The MEH is subjected to controlled vibrations—square, triangular, and sinusoidal waves—using a modified cantilever configuration. It generates a voltage difference across the pickup coil terminals using a Galfenol transducer as the magnetostrictive material, which is then converted into steady DC voltage via a rectification cum warning circuit. The effectiveness of the energy harvester has been confirmed through an experimental setup and expanded to monitor the state of a prototype bridge. The MEH produces varying voltages in response to vibrations in its surroundings, allowing for the differentiation between the healthy condition and the declining condition of bridges. Additionally, an adaptive neuro-fuzzy inference system enables the creation of predictive models based on the existing experimental data. This provides vital insights into the viability of real-time monitoring and early detection of structural anomalies in bridge structures. This study demonstrates the effectiveness of utilizing Galfenol-based magnetostrictive energy harvesting to enhance the safety and efficiency of infrastructure maintenance. This technology additionally enhances the durability and long-term viability of transportation networks.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.