{"title":"On the isomorphism problem for monoids of product-one sequences","authors":"Alfred Geroldinger, Jun Seok Oh","doi":"10.1112/blms.70042","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>1</mn>\n </msub>\n <annotation>$G_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math> be torsion groups. We prove that the monoids of product-one sequences over <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>1</mn>\n </msub>\n <annotation>$G_1$</annotation>\n </semantics></math> and over <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math> are isomorphic if and only if the groups <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>1</mn>\n </msub>\n <annotation>$G_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math> are isomorphic. This was known before for abelian groups.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1482-1495"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70042","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be torsion groups. We prove that the monoids of product-one sequences over and over are isomorphic if and only if the groups and are isomorphic. This was known before for abelian groups.