Lakshmi Suneetha Vikram, Supraja Potu, Durga Prasad Kasireddi A. K., Uday Kumar Khanapuram, Haranath Divi, Rakesh Kumar Rajaboina
{"title":"Biowaste Sea Shells-Based Triboelectric Nanogenerator: Sustainable Approach for Efficient Mechanical Energy Harvesting","authors":"Lakshmi Suneetha Vikram, Supraja Potu, Durga Prasad Kasireddi A. K., Uday Kumar Khanapuram, Haranath Divi, Rakesh Kumar Rajaboina","doi":"10.1002/ente.202401333","DOIUrl":null,"url":null,"abstract":"<p>Waste-to-energy research is crucial for reducing environmental pollution and achieving a greener planet. Among many waste-to-energy technologies, triboelectric nanogenerators (TENGs) have attracted much attention in using waste materials for energy production in the last decade. This study presents the first reported use of biowaste sea shells (BSS) in the development of TENGs. For the fabrication of the TENG, BSS powder is attached to aluminum tape to act as one triboelectric layer and silicone rubber to serve as the opposite triboelectric layer. The BSS-TENG device produces an output voltage and current of ≈200 V and 40 μA, respectively. The power density achieved by the fabricated TENG is 948 mW m<sup>−2</sup>. The output of the TENG is utilized in a powering series connected 240 LEDs momentarily for each tapping. This study not only offers a sustainable and cost-effective material for TENG assembly, but also opens up new avenues for research into energy harvesting utilizing biowaste, with the potential for future applications in powering small-scale devices and contributing to sustainable energy solutions.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401333","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Waste-to-energy research is crucial for reducing environmental pollution and achieving a greener planet. Among many waste-to-energy technologies, triboelectric nanogenerators (TENGs) have attracted much attention in using waste materials for energy production in the last decade. This study presents the first reported use of biowaste sea shells (BSS) in the development of TENGs. For the fabrication of the TENG, BSS powder is attached to aluminum tape to act as one triboelectric layer and silicone rubber to serve as the opposite triboelectric layer. The BSS-TENG device produces an output voltage and current of ≈200 V and 40 μA, respectively. The power density achieved by the fabricated TENG is 948 mW m−2. The output of the TENG is utilized in a powering series connected 240 LEDs momentarily for each tapping. This study not only offers a sustainable and cost-effective material for TENG assembly, but also opens up new avenues for research into energy harvesting utilizing biowaste, with the potential for future applications in powering small-scale devices and contributing to sustainable energy solutions.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.