{"title":"Orthogonal almost complex structure and its Nijenhuis tensor","authors":"Zizhou Tang, Wenjiao Yan","doi":"10.1112/blms.70044","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we demonstrate that on an almost Hermitian manifold <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>J</mi>\n <mo>,</mo>\n <mi>d</mi>\n <msup>\n <mi>s</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^{2n}, J, ds^2)$</annotation>\n </semantics></math>, a 2-form <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>=</mo>\n <msup>\n <mi>S</mi>\n <mo>∗</mo>\n </msup>\n <mi>Φ</mi>\n </mrow>\n <annotation>$\\varphi =S^*\\Phi$</annotation>\n </semantics></math>, the pullback of the Kähler form <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> on the twistor bundle over <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <annotation>$M^{2n}$</annotation>\n </semantics></math>, is nondegenerate if the squared norm <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>N</mi>\n <mo>|</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <annotation>$|N|^2$</annotation>\n </semantics></math> of the Nijenhuis tensor is less than <span></span><math>\n <semantics>\n <mfrac>\n <mn>64</mn>\n <mn>5</mn>\n </mfrac>\n <annotation>$\\frac{64}{5}$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\geqslant 3$</annotation>\n </semantics></math> or less than 16 when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>. As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mn>6</mn>\n </msup>\n <mo>,</mo>\n <mi>d</mi>\n <msubsup>\n <mi>s</mi>\n <mn>0</mn>\n <mn>2</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$(S^6, ds_0^2)$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>N</mi>\n <mo>|</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo><</mo>\n <mfrac>\n <mn>64</mn>\n <mn>5</mn>\n </mfrac>\n </mrow>\n <annotation>$|N|^2<\\frac{64}{5}$</annotation>\n </semantics></math> everywhere.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1512-1523"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we demonstrate that on an almost Hermitian manifold , a 2-form , the pullback of the Kähler form on the twistor bundle over , is nondegenerate if the squared norm of the Nijenhuis tensor is less than when or less than 16 when . As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere with everywhere.