Orthogonal almost complex structure and its Nijenhuis tensor

IF 0.8 3区 数学 Q2 MATHEMATICS
Zizhou Tang, Wenjiao Yan
{"title":"Orthogonal almost complex structure and its Nijenhuis tensor","authors":"Zizhou Tang,&nbsp;Wenjiao Yan","doi":"10.1112/blms.70044","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we demonstrate that on an almost Hermitian manifold <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>J</mi>\n <mo>,</mo>\n <mi>d</mi>\n <msup>\n <mi>s</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^{2n}, J, ds^2)$</annotation>\n </semantics></math>, a 2-form <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>=</mo>\n <msup>\n <mi>S</mi>\n <mo>∗</mo>\n </msup>\n <mi>Φ</mi>\n </mrow>\n <annotation>$\\varphi =S^*\\Phi$</annotation>\n </semantics></math>, the pullback of the Kähler form <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> on the twistor bundle over <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <annotation>$M^{2n}$</annotation>\n </semantics></math>, is nondegenerate if the squared norm <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>N</mi>\n <mo>|</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <annotation>$|N|^2$</annotation>\n </semantics></math> of the Nijenhuis tensor is less than <span></span><math>\n <semantics>\n <mfrac>\n <mn>64</mn>\n <mn>5</mn>\n </mfrac>\n <annotation>$\\frac{64}{5}$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\geqslant 3$</annotation>\n </semantics></math> or less than 16 when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>. As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mn>6</mn>\n </msup>\n <mo>,</mo>\n <mi>d</mi>\n <msubsup>\n <mi>s</mi>\n <mn>0</mn>\n <mn>2</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$(S^6, ds_0^2)$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>N</mi>\n <mo>|</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>&lt;</mo>\n <mfrac>\n <mn>64</mn>\n <mn>5</mn>\n </mfrac>\n </mrow>\n <annotation>$|N|^2&lt;\\frac{64}{5}$</annotation>\n </semantics></math> everywhere.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1512-1523"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we demonstrate that on an almost Hermitian manifold ( M 2 n , J , d s 2 ) $(M^{2n}, J, ds^2)$ , a 2-form φ = S Φ $\varphi =S^*\Phi$ , the pullback of the Kähler form Φ $\Phi$ on the twistor bundle over M 2 n $M^{2n}$ , is nondegenerate if the squared norm | N | 2 $|N|^2$ of the Nijenhuis tensor is less than 64 5 $\frac{64}{5}$ when n 3 $n\geqslant 3$ or less than 16 when n = 2 $n=2$ . As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere ( S 6 , d s 0 2 ) $(S^6, ds_0^2)$ with | N | 2 < 64 5 $|N|^2<\frac{64}{5}$  everywhere.

正交几乎复结构及其Nijenhuis张量
在本文中,我们证明了在一个几乎厄米流形(m2n, J, ds2) $(M^{2n}, J, ds^2)$上,a 2-form φ = S∗Φ $\varphi =S^*\Phi$;在m2n $M^{2n}$上,Kähler形式Φ $\Phi$对扭束的回拉,是非简并的如果Nijenhuis张量的平方范数| N | 2 $|N|^2$小于64 5 $\frac{64}{5}$当N大于或等于3$n\geqslant 3$或当n = 2时小于16 $n=2$。作为结果之一,在标准球(s6)上不存在正交的几乎复杂结构。d s 0 2) $(S^6, ds_0^2)$ with | N | 2 &lt;64 5 $|N|^2<\frac{64}{5}$到处都是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信