Equality of skew Schur functions in noncommuting variables

IF 0.8 3区 数学 Q2 MATHEMATICS
Emma Yu Jin, Stephanie van Willigenburg
{"title":"Equality of skew Schur functions in noncommuting variables","authors":"Emma Yu Jin,&nbsp;Stephanie van Willigenburg","doi":"10.1112/blms.70037","DOIUrl":null,"url":null,"abstract":"<p>The question of classifying when two skew Schur functions are equal is a substantial open problem, which remains unsolved for over a century. In 2022, Aliniaeifard, Li, and van Willigenburg introduced skew Schur functions in noncommuting variables, <span></span><math>\n <semantics>\n <msub>\n <mi>s</mi>\n <mrow>\n <mo>(</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$s_{(\\delta,\\mathcal {D})}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math> is a connected skew diagram with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> boxes and <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math> is a permutation in the symmetric group <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <annotation>$S_n$</annotation>\n </semantics></math>. In this paper, we combine these two and classify when two skew Schur functions in noncommuting variables are equal: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n <mrow>\n <mo>(</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>s</mi>\n <mrow>\n <mo>(</mo>\n <mi>τ</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n </mrow>\n <annotation>$s_{(\\delta,\\mathcal {D})} = s_{(\\tau,\\mathcal {T})}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>≠</mo>\n <mi>T</mi>\n </mrow>\n <annotation>$\\mathcal {D}\\ne \\mathcal {T}$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math> is a nonsymmetric ribbon, <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathcal {T}$</annotation>\n </semantics></math> is the antipodal rotation of <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mover>\n <mrow>\n <msup>\n <mi>τ</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>δ</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{\\tau ^{-1}\\delta }$</annotation>\n </semantics></math> is an explicit bijection between two set partitions determined by <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1415-1428"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The question of classifying when two skew Schur functions are equal is a substantial open problem, which remains unsolved for over a century. In 2022, Aliniaeifard, Li, and van Willigenburg introduced skew Schur functions in noncommuting variables, s ( δ , D ) $s_{(\delta,\mathcal {D})}$ , where D $\mathcal {D}$ is a connected skew diagram with n $n$ boxes and δ $\delta$ is a permutation in the symmetric group S n $S_n$ . In this paper, we combine these two and classify when two skew Schur functions in noncommuting variables are equal: s ( δ , D ) = s ( τ , T ) $s_{(\delta,\mathcal {D})} = s_{(\tau,\mathcal {T})}$ such that D T $\mathcal {D}\ne \mathcal {T}$ if and only if D $\mathcal {D}$ is a nonsymmetric ribbon, T $\mathcal {T}$ is the antipodal rotation of D $\mathcal {D}$ , and τ 1 δ ¯ $\overline{\tau ^{-1}\delta }$ is an explicit bijection between two set partitions determined by D $\mathcal {D}$ .

Abstract Image

非交换变量中斜Schur函数的等式
当两个偏舒尔函数相等时的分类问题是一个重要的开放问题,一个多世纪以来一直没有解决。在2022年,Aliniaeifard, Li和van Willigenburg在非交换变量s (δ, D) $s_{(\delta,\mathcal {D})}$中引入了歪斜Schur函数,其中D $\mathcal {D}$是一个有n个$n$框的连接斜线图,δ $\delta$是对称群S n $S_n$中的一个排列。本文将这两者结合起来,当两个非交换变量中的斜Schur函数相等时进行分类:s (δ, D) = s (τ,T) $s_{(\delta,\mathcal {D})} = s_{(\tau,\mathcal {T})}$使得D≠T $\mathcal {D}\ne \mathcal {T}$当且仅当D $\mathcal {D}$是一个非对称带,T $\mathcal {T}$是D $\mathcal {D}$的对映旋转,τ−1 δ¯$\overline{\tau ^{-1}\delta }$是由D确定的两个集分区之间的显式双射$\mathcal {D}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信