{"title":"Equality of skew Schur functions in noncommuting variables","authors":"Emma Yu Jin, Stephanie van Willigenburg","doi":"10.1112/blms.70037","DOIUrl":null,"url":null,"abstract":"<p>The question of classifying when two skew Schur functions are equal is a substantial open problem, which remains unsolved for over a century. In 2022, Aliniaeifard, Li, and van Willigenburg introduced skew Schur functions in noncommuting variables, <span></span><math>\n <semantics>\n <msub>\n <mi>s</mi>\n <mrow>\n <mo>(</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$s_{(\\delta,\\mathcal {D})}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math> is a connected skew diagram with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> boxes and <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math> is a permutation in the symmetric group <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <annotation>$S_n$</annotation>\n </semantics></math>. In this paper, we combine these two and classify when two skew Schur functions in noncommuting variables are equal: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n <mrow>\n <mo>(</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>s</mi>\n <mrow>\n <mo>(</mo>\n <mi>τ</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n </mrow>\n <annotation>$s_{(\\delta,\\mathcal {D})} = s_{(\\tau,\\mathcal {T})}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>≠</mo>\n <mi>T</mi>\n </mrow>\n <annotation>$\\mathcal {D}\\ne \\mathcal {T}$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math> is a nonsymmetric ribbon, <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathcal {T}$</annotation>\n </semantics></math> is the antipodal rotation of <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mover>\n <mrow>\n <msup>\n <mi>τ</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mi>δ</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{\\tau ^{-1}\\delta }$</annotation>\n </semantics></math> is an explicit bijection between two set partitions determined by <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$\\mathcal {D}$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1415-1428"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The question of classifying when two skew Schur functions are equal is a substantial open problem, which remains unsolved for over a century. In 2022, Aliniaeifard, Li, and van Willigenburg introduced skew Schur functions in noncommuting variables, , where is a connected skew diagram with boxes and is a permutation in the symmetric group . In this paper, we combine these two and classify when two skew Schur functions in noncommuting variables are equal: such that if and only if is a nonsymmetric ribbon, is the antipodal rotation of , and is an explicit bijection between two set partitions determined by .