Endowing rapid Na+ conduction by architecture design of Na3Zr2Si2PO12 in composite electrolytes for ultralong lifespan quasi-solid-state sodium metal batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kang-Qiang He, Xin-Gan Liao, Hao-Jian Lian, Xiang Guan, Da-Zhu Chen, Yi-Kun Su, Robert K. Y. Li, Chen Liu
{"title":"Endowing rapid Na+ conduction by architecture design of Na3Zr2Si2PO12 in composite electrolytes for ultralong lifespan quasi-solid-state sodium metal batteries","authors":"Kang-Qiang He,&nbsp;Xin-Gan Liao,&nbsp;Hao-Jian Lian,&nbsp;Xiang Guan,&nbsp;Da-Zhu Chen,&nbsp;Yi-Kun Su,&nbsp;Robert K. Y. Li,&nbsp;Chen Liu","doi":"10.1007/s12598-024-03213-7","DOIUrl":null,"url":null,"abstract":"<div><p>Solid-state sodium batteries offer new opportunities for emerging applications with sensitivity to safety and cost. However, the prevailing composite electrolyte structure, as a core component, is still poorly conductive to Na ions. Herein, a 3D architecture design of Na<sup>+</sup> conductive Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> framework is introduced to in situ compound with polymer electrolyte, subtly inducing an anion-enriched interface that acts as rapid ion immigration channel. Multiple continuous and fast Na<sup>+</sup> transport pathways are built via the amorphization of polymer matrix, the consecutive skeleton, and the induced anion-adsorbed interface, resulting in a high ionic conductivity of 4.43 × 10<sup>−4</sup> S·cm<sup>−1</sup>. Notably, the design of 3D skeleton not only enables the content of inorganic part exceeds 60 wt% without any sign of agglomeration, but also endows the composite electrolyte reach a high transference number of 0.61 by immobilizing the anions. The assembled quasi-solid-state cells exhibit high practical safety and can stably work for over 1500 cycles with 83.1% capacity retention. This tactic affords new insights in designing Na<sup>+</sup> conductive composite electrolytes suffering from slow ion immigration for quasi-solid-state sodium batteries.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"3795 - 3805"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03213-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state sodium batteries offer new opportunities for emerging applications with sensitivity to safety and cost. However, the prevailing composite electrolyte structure, as a core component, is still poorly conductive to Na ions. Herein, a 3D architecture design of Na+ conductive Na3Zr2Si2PO12 framework is introduced to in situ compound with polymer electrolyte, subtly inducing an anion-enriched interface that acts as rapid ion immigration channel. Multiple continuous and fast Na+ transport pathways are built via the amorphization of polymer matrix, the consecutive skeleton, and the induced anion-adsorbed interface, resulting in a high ionic conductivity of 4.43 × 10−4 S·cm−1. Notably, the design of 3D skeleton not only enables the content of inorganic part exceeds 60 wt% without any sign of agglomeration, but also endows the composite electrolyte reach a high transference number of 0.61 by immobilizing the anions. The assembled quasi-solid-state cells exhibit high practical safety and can stably work for over 1500 cycles with 83.1% capacity retention. This tactic affords new insights in designing Na+ conductive composite electrolytes suffering from slow ion immigration for quasi-solid-state sodium batteries.

Graphical abstract

超长寿命准固态钠金属电池用复合电解质Na3Zr2Si2PO12结构设计赋予Na+快速传导
固态钠电池为具有安全性和成本敏感性的新兴应用提供了新的机会。然而,目前流行的复合电解质结构作为核心组件,对Na离子的导电性仍然很差。本文将Na+导电Na3Zr2Si2PO12框架的三维结构设计引入到聚合物电解质的原位化合物中,巧妙地诱导出一个富含阴离子的界面,作为离子的快速迁移通道。通过聚合物基体的非晶化、连续骨架和诱导阴离子吸附界面,构建了多条连续快速的Na+传输通道,获得了4.43 × 10−4 S·cm−1的高离子电导率。值得注意的是,三维骨架的设计不仅使无机部分的含量超过60 wt%而没有任何团聚的迹象,而且通过固定阴离子使复合电解质达到0.61的高转移数。组装的准固态电池具有较高的实用安全性,可稳定工作1500次以上,容量保持率为83.1%。这为设计准固态钠电池中离子迁移缓慢的钠离子导电复合电解质提供了新的思路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信