Induction Effect of Fluorine-Grafted Polymer-Based Electrolytes for High-Performance Lithium Metal Batteries

IF 26.6 1区 材料科学 Q1 Engineering
Haiman Hu, Jiajia Li, Fei Lin, Jiaqi Huang, Huaiyang Zheng, Haitao Zhang, Xiaoyan Ji
{"title":"Induction Effect of Fluorine-Grafted Polymer-Based Electrolytes for High-Performance Lithium Metal Batteries","authors":"Haiman Hu,&nbsp;Jiajia Li,&nbsp;Fei Lin,&nbsp;Jiaqi Huang,&nbsp;Huaiyang Zheng,&nbsp;Haitao Zhang,&nbsp;Xiaoyan Ji","doi":"10.1007/s40820-025-01738-9","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-solid-state composite electrolytes (QSCEs) show promise for high-performance solid-state batteries, while they still struggle with interfacial stability and cycling performance. Herein, a F-grafted QSCE (F-QSCE) was developed via copolymerizing the F monomers and ionic liquid monomers. The F-QSCE demonstrates better overall performance, such as high ionic conductivity of 1.21 mS cm<sup>–1</sup> at 25 °C, wide electrochemical windows of 5.20 V, and stable cycling stability for Li//Li symmetric cells over 4000 h. This is attributed to the significant electronegativity difference between C and F in the fluorinated chain (‒CF<sub>2</sub>‒CF‒CF<sub>3</sub>), which causes the electron cloud to shift toward the F atom, surrounding it with a negative charge and producing the inductive effect. Furthermore, the interactions between Li<sup>+</sup> and F, TFSI<sup>‒</sup>, and C are enhanced, reducing ion pair aggregation (Li<sup>+</sup>‒TFSI<sup>‒</sup>‒Li<sup>+</sup>) and promoting Li<sup>+</sup> transport. Besides, ‒CF<sub>2</sub>‒CF‒CF<sub>3</sub> decomposes to form LiF preferentially over TFSI<sup>–</sup>, resulting in better interfacial stability for F-QSCE. This work provides a pathway to enable the development of high-performance Li metal batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01738-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01738-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-solid-state composite electrolytes (QSCEs) show promise for high-performance solid-state batteries, while they still struggle with interfacial stability and cycling performance. Herein, a F-grafted QSCE (F-QSCE) was developed via copolymerizing the F monomers and ionic liquid monomers. The F-QSCE demonstrates better overall performance, such as high ionic conductivity of 1.21 mS cm–1 at 25 °C, wide electrochemical windows of 5.20 V, and stable cycling stability for Li//Li symmetric cells over 4000 h. This is attributed to the significant electronegativity difference between C and F in the fluorinated chain (‒CF2‒CF‒CF3), which causes the electron cloud to shift toward the F atom, surrounding it with a negative charge and producing the inductive effect. Furthermore, the interactions between Li+ and F, TFSI, and C are enhanced, reducing ion pair aggregation (Li+‒TFSI‒Li+) and promoting Li+ transport. Besides, ‒CF2‒CF‒CF3 decomposes to form LiF preferentially over TFSI, resulting in better interfacial stability for F-QSCE. This work provides a pathway to enable the development of high-performance Li metal batteries.

Abstract Image

氟接枝聚合物基电解质对高性能锂金属电池的诱导效应
准固态复合电解质(qsce)显示出高性能固态电池的前景,但它们仍在界面稳定性和循环性能方面苦苦挣扎。通过F单体与离子液体单体的共聚,制备了接枝F的QSCE (F-QSCE)。F- qsce整体性能较好,在25℃时离子电导率高达1.21 mS cm-1,电化学窗口宽达5.20 V,在4000 h内Li//Li对称电池的循环稳定性稳定。这是由于氟化链(-CF2-CF-CF3)中C和F之间存在显著的电负性差异,导致电子云向F原子移动,并以负电荷包围F原子,从而产生感应效应。此外,Li+与F、TFSI -和C之间的相互作用增强,减少离子对聚集(Li+ - TFSI - Li+),促进Li+运输。此外,- cf2 - cf - cf3比TFSI -更容易分解形成liff,从而使F-QSCE具有更好的界面稳定性。这项工作为高性能锂金属电池的开发提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信