{"title":"Plasmon-sound hybridization in ionic crystals","authors":"Jakob Rappolt, Andreas Rückriegel, Peter Kopietz","doi":"10.1140/epjb/s10051-025-00941-2","DOIUrl":null,"url":null,"abstract":"<p> We study the hybridization between plasmons, phonons, and electronic sound in ionic crystals using the Debye model, where the ionic background is modeled as a homogeneous, isotropic, elastic medium. We explicitly obtain the energies and the damping of the hybrid plasmon-sound modes in the hydrodynamic regime and calculate the corresponding dynamic structure factor. We find that with increasing viscosity, a plasmon-like mode quickly decays into a broad, incoherent background, while a phonon-like mode with linear dispersion remains rather sharp. The quantitative behavior of the hybridized collective modes depends on the ratio of the electronic and the ionic plasma frequencies. We also show that the direct Coulomb interaction between the ions is essential to obtain a collective sound mode with linear dispersion.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-00941-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00941-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We study the hybridization between plasmons, phonons, and electronic sound in ionic crystals using the Debye model, where the ionic background is modeled as a homogeneous, isotropic, elastic medium. We explicitly obtain the energies and the damping of the hybrid plasmon-sound modes in the hydrodynamic regime and calculate the corresponding dynamic structure factor. We find that with increasing viscosity, a plasmon-like mode quickly decays into a broad, incoherent background, while a phonon-like mode with linear dispersion remains rather sharp. The quantitative behavior of the hybridized collective modes depends on the ratio of the electronic and the ionic plasma frequencies. We also show that the direct Coulomb interaction between the ions is essential to obtain a collective sound mode with linear dispersion.