Riemann–Liouville Fractional Integral Type Deep Neural Network Kantorovich Operators

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Behar Baxhaku, Purshottam Narain Agrawal, Shivam Bajpeyi
{"title":"Riemann–Liouville Fractional Integral Type Deep Neural Network Kantorovich Operators","authors":"Behar Baxhaku,&nbsp;Purshottam Narain Agrawal,&nbsp;Shivam Bajpeyi","doi":"10.1007/s40995-024-01729-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel family of Kantorovich-type deep neural network operators based on Riemann–Liouville fractional integrals. Building upon the work of Costarelli (Math Model Anal 27(4):547–560, 2022) and Sharma and Singh (J Math Anal Appl 533(2):128009, 2024), we investigate the approximation properties of these operators in the spaces <span>\\({{\\mathcal {C}}}({\\mathscr {I}})\\)</span> (the space of all continuous functions on <span>\\({\\mathscr {I}}:=[-1,1]\\)</span>) and <span>\\({\\mathscr {L}}_{{\\mathcalligra {p}}}({\\mathscr {I}})\\)</span> (the space of all <span>\\({\\mathcalligra {p}}\\)</span>-th Lebesgue integrable functions on <span>\\({\\mathscr {I}}\\)</span>, <span>\\(1\\le {\\mathcalligra {p}}&lt;\\infty\\)</span>). We establish point-wise and uniform convergence results for both single and multi-hidden layer networks in the spaces <span>\\({{\\mathcal {C}}}({\\mathscr {I}})\\)</span> and <span>\\({\\mathscr {L}}_{{\\mathcalligra {p}}}({\\mathscr {I}})\\)</span>, <span>\\(1\\le {\\mathcalligra {p}}&lt;\\infty\\)</span>. Our analysis leverages auxiliary approximation results for the single-hidden layer case to derive density theorems for the two-hidden layer and multi-hidden layer scenarios. Finally, we discuss specific examples of sigmoidal activation functions that are compatible with our proposed operators.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 3","pages":"711 - 724"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01729-2","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel family of Kantorovich-type deep neural network operators based on Riemann–Liouville fractional integrals. Building upon the work of Costarelli (Math Model Anal 27(4):547–560, 2022) and Sharma and Singh (J Math Anal Appl 533(2):128009, 2024), we investigate the approximation properties of these operators in the spaces \({{\mathcal {C}}}({\mathscr {I}})\) (the space of all continuous functions on \({\mathscr {I}}:=[-1,1]\)) and \({\mathscr {L}}_{{\mathcalligra {p}}}({\mathscr {I}})\) (the space of all \({\mathcalligra {p}}\)-th Lebesgue integrable functions on \({\mathscr {I}}\), \(1\le {\mathcalligra {p}}<\infty\)). We establish point-wise and uniform convergence results for both single and multi-hidden layer networks in the spaces \({{\mathcal {C}}}({\mathscr {I}})\) and \({\mathscr {L}}_{{\mathcalligra {p}}}({\mathscr {I}})\), \(1\le {\mathcalligra {p}}<\infty\). Our analysis leverages auxiliary approximation results for the single-hidden layer case to derive density theorems for the two-hidden layer and multi-hidden layer scenarios. Finally, we discuss specific examples of sigmoidal activation functions that are compatible with our proposed operators.

Riemann-Liouville分数积分型深度神经网络Kantorovich算子
介绍了一类新的基于Riemann-Liouville分数阶积分的kantorovich型深度神经网络算子。在Costarelli (Math Model Anal 27(4):547 - 560,2022)和Sharma和Singh (J Math Anal Appl 533(2): 128009,2024)的工作的基础上,我们研究了这些算子在\({{\mathcal {C}}}({\mathscr {I}})\) (\({\mathscr {I}}:=[-1,1]\)上所有连续函数的空间)和\({\mathscr {L}}_{{\mathcalligra {p}}}({\mathscr {I}})\) (\({\mathscr {I}}\), \(1\le {\mathcalligra {p}}<\infty\)上所有\({\mathcalligra {p}}\) -第Lebesgue可积函数的空间)中的近似性质。我们在\({{\mathcal {C}}}({\mathscr {I}})\)和\({\mathscr {L}}_{{\mathcalligra {p}}}({\mathscr {I}})\), \(1\le {\mathcalligra {p}}<\infty\)空间中建立了单隐层和多隐层网络的逐点收敛和一致收敛结果。我们的分析利用了单隐藏层情况的辅助近似结果来推导两隐藏层和多隐藏层情况的密度定理。最后,我们讨论了与我们提出的算子兼容的s型激活函数的具体例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信