Shear behavior of gravel-block soil of the Qinghai-Tibet Plateau based on large-scale direct shear test and numerical simulation

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Tao Wen, Wenjun Jia, Zhi Quan, Wei Guo, Yankun Wang, Ningsheng Chen
{"title":"Shear behavior of gravel-block soil of the Qinghai-Tibet Plateau based on large-scale direct shear test and numerical simulation","authors":"Tao Wen,&nbsp;Wenjun Jia,&nbsp;Zhi Quan,&nbsp;Wei Guo,&nbsp;Yankun Wang,&nbsp;Ningsheng Chen","doi":"10.1007/s10064-025-04346-4","DOIUrl":null,"url":null,"abstract":"<div><p>The shear behavior of gravel-block soil (GBS) is unique and significant for evaluation the failure mechanism of GBS landslide on the Qinghai-Tibet Plateau. This study focuses on interpreting the shear behavior observed in the GBS during large-scale direct shear tests conducted on a landslide in Jiacha County, Tibet, China. The tests considered coarse particle content (CPC), dry density, and moisture conditions. Additionally, a discrete element numerical model, scaled to match the laboratory testing dimensions, was developed to simulate the large-scale direct shear tests on GBS. Results indicated that an increase in CPC improves the strength of the GBS, as it enhances the framework strength through interlocking between gravel blocks and between gravel blocks and the soil mass. The critical CPC for shear failure of the GBS exhibits a decreasing trend as the dry density increases. Furthermore, particle crushing rate (PCR) of the GBS is positively correlated with CPC, vertical pressure, and dry density. The simulation results show good agreement with the test results, providing insights into the damage-shear fracture mechanism of typical GBS under large-scale direct shear tests. The research outcomes provide a theoretical basis for the prevention and control of geological hazards in the Qinghai-Tibet Plateau.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04346-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The shear behavior of gravel-block soil (GBS) is unique and significant for evaluation the failure mechanism of GBS landslide on the Qinghai-Tibet Plateau. This study focuses on interpreting the shear behavior observed in the GBS during large-scale direct shear tests conducted on a landslide in Jiacha County, Tibet, China. The tests considered coarse particle content (CPC), dry density, and moisture conditions. Additionally, a discrete element numerical model, scaled to match the laboratory testing dimensions, was developed to simulate the large-scale direct shear tests on GBS. Results indicated that an increase in CPC improves the strength of the GBS, as it enhances the framework strength through interlocking between gravel blocks and between gravel blocks and the soil mass. The critical CPC for shear failure of the GBS exhibits a decreasing trend as the dry density increases. Furthermore, particle crushing rate (PCR) of the GBS is positively correlated with CPC, vertical pressure, and dry density. The simulation results show good agreement with the test results, providing insights into the damage-shear fracture mechanism of typical GBS under large-scale direct shear tests. The research outcomes provide a theoretical basis for the prevention and control of geological hazards in the Qinghai-Tibet Plateau.

基于大尺度直剪试验与数值模拟的青藏高原碎石块土剪切特性
碎石块土的剪切特性对评价青藏高原碎石块土滑坡破坏机制具有独特的意义。本研究的重点是解释在西藏嘉察县进行的滑坡大尺度直剪试验中观测到的GBS剪切行为。试验考虑了粗颗粒含量(CPC)、干密度和水分条件。此外,建立了与实验室试验尺寸相匹配的离散元数值模型,模拟了GBS的大尺度直剪试验。结果表明,CPC的增加提高了GBS的强度,因为它通过砾石块之间以及砾石块与土体之间的联锁来增强框架强度。GBS剪切破坏临界CPC随干密度的增大呈减小趋势。此外,GBS的颗粒破碎率(PCR)与CPC、垂直压力和干密度呈正相关。模拟结果与试验结果吻合较好,有助于深入了解典型GBS在大型直剪试验下的损伤-剪切断裂机理。研究成果为青藏高原地质灾害的防治提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信