Capacitance decay mechanism of vanadium nitride supercapacitor electrodes in KOH electrolytes

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiu-Li Li, Hao Song, Yong-Hui Zhang, Yu-Lei Ren, Qi-Fei Guo, Zi-Huan Tang, Zhuo Li, Biao Gao, Paul K. Chu, Kai-Fu Huo
{"title":"Capacitance decay mechanism of vanadium nitride supercapacitor electrodes in KOH electrolytes","authors":"Xiu-Li Li,&nbsp;Hao Song,&nbsp;Yong-Hui Zhang,&nbsp;Yu-Lei Ren,&nbsp;Qi-Fei Guo,&nbsp;Zi-Huan Tang,&nbsp;Zhuo Li,&nbsp;Biao Gao,&nbsp;Paul K. Chu,&nbsp;Kai-Fu Huo","doi":"10.1007/s12598-025-03245-7","DOIUrl":null,"url":null,"abstract":"<div><p>Vanadium nitride (VN) is a promising pseudocapacitive material due to the high theoretical capacity, rapid redox Faradaic kinetics, and appropriate potential window. Although VN shows large pseudocapacitance in alkaline electrolytes, the electrochemical instability and capacity degradation of VN electrode materials present significant challenges for practical applications. Herein, the capacitance decay mechanism of VN is investigated and a simple strategy to improve cycling stability of VN supercapacitor electrodes is proposed by introducing VO<sub>4</sub><sup>3−</sup> anion in KOH electrolytes. Our results show that the VN electrode is electrochemical stabilization between −1.0 and −0.4 V (vs. Hg/HgO reference electrode) in 1.0 M KOH electrolyte, but demonstrates irreversible oxidation and fast capacitance decay in the potential range of −0.4 to 0 V. In situ electrochemical measurements reveal that the capacitance decay of VN from −0.4 to 0 V is ascribed to the irreversible oxidation of vanadium (V) of N–V–O species by oxygen (O) of OH<sup>−</sup>. The as-generated oxidization species are subsequently dissolved into KOH electrolytes, thereby undermining the electrochemical stability of VN. However, this irreversible oxidation process could be hindered by introducing VO<sub>4</sub><sup>3−</sup> in KOH electrolytes. A high volumetric specific capacitance of 671.9 F·cm<sup>−3</sup> (1 A·cm<sup>−3</sup>) and excellent cycling stability (120.3% over 1000 cycles) are achieved for VN nanorod electrode in KOH electrolytes containing VO<sub>4</sub><sup>3−</sup>. This study not only elucidates the failure mechanism of VN supercapacitor electrodes in alkaline electrolytes, but also provides new insights into enhancing pseudocapacitive energy storage of VN-based electrode materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"3909 - 3919"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03245-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium nitride (VN) is a promising pseudocapacitive material due to the high theoretical capacity, rapid redox Faradaic kinetics, and appropriate potential window. Although VN shows large pseudocapacitance in alkaline electrolytes, the electrochemical instability and capacity degradation of VN electrode materials present significant challenges for practical applications. Herein, the capacitance decay mechanism of VN is investigated and a simple strategy to improve cycling stability of VN supercapacitor electrodes is proposed by introducing VO43− anion in KOH electrolytes. Our results show that the VN electrode is electrochemical stabilization between −1.0 and −0.4 V (vs. Hg/HgO reference electrode) in 1.0 M KOH electrolyte, but demonstrates irreversible oxidation and fast capacitance decay in the potential range of −0.4 to 0 V. In situ electrochemical measurements reveal that the capacitance decay of VN from −0.4 to 0 V is ascribed to the irreversible oxidation of vanadium (V) of N–V–O species by oxygen (O) of OH. The as-generated oxidization species are subsequently dissolved into KOH electrolytes, thereby undermining the electrochemical stability of VN. However, this irreversible oxidation process could be hindered by introducing VO43− in KOH electrolytes. A high volumetric specific capacitance of 671.9 F·cm−3 (1 A·cm−3) and excellent cycling stability (120.3% over 1000 cycles) are achieved for VN nanorod electrode in KOH electrolytes containing VO43−. This study not only elucidates the failure mechanism of VN supercapacitor electrodes in alkaline electrolytes, but also provides new insights into enhancing pseudocapacitive energy storage of VN-based electrode materials.

Graphical abstract

氢氧化钾电解液中氮化钒超级电容器电极的电容衰减机理
氮化钒(VN)具有理论容量大、氧化还原法拉第动力学快、电势窗口合适等优点,是一种很有前途的赝电容材料。虽然VN在碱性电解质中表现出较大的赝电容,但VN电极材料的电化学不稳定性和容量退化对实际应用提出了重大挑战。本文研究了VN的电容衰减机理,提出了在KOH电解液中引入VO43−阴离子来提高VN超级电容器电极循环稳定性的简单策略。结果表明,在1.0 M KOH电解液中,VN电极在−1.0 ~−0.4 V(相对于Hg/HgO基准电极)范围内电化学稳定,但在−0.4 ~ 0 V电位范围内表现出不可逆氧化和快速电容衰减。原位电化学测量表明,VN的电容从- 0.4 V衰减到0 V是由于N-V-O的钒(V)被OH−中的氧(O)不可逆氧化所致。生成的氧化物质随后溶解在KOH电解质中,从而破坏了VN的电化学稳定性。然而,在KOH电解质中引入VO43−会阻碍这种不可逆氧化过程。在含VO43−的KOH电解质中,VN纳米棒电极获得了671.9 F·cm−3 (1 A·cm−3)的高体积比电容和良好的循环稳定性(1000次循环120.3%)。该研究不仅阐明了VN超级电容器电极在碱性电解质中的失效机理,而且为增强VN基电极材料的假电容储能提供了新的见解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信