{"title":"The synergistic inhibition of the growth of intermetallic compounds at Sn-0.7Cu/Cu interface by Al and Pt","authors":"An-Cang Yang, Yao-Ping Lu, Bin Zhang, Yong-Hua Duan, Li-Shi Ma, Shan-Ju Zheng, Ming-Jun Peng, Meng-Nie Li, Zhi-Hang Xu","doi":"10.1007/s12598-024-03200-y","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of intermetallic compounds (IMCs) connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect. However, the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear. Herein, we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al (wt%) using the high-throughput screening (HTS) method. The results showed that it possesses excellent welding performance with an inhibition rate over 40% on the growth of IMCs layers. For Cu<sub>6</sub>Sn<sub>5</sub>, the co-doping of Al and Pt not only greatly improves its thermodynamic stability, but also effectively suppresses the phase transition. Meanwhile, the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects. The substitution sites of Al and Pt in Cu<sub>6</sub>Sn<sub>5</sub> have been explored using atomic resolution imaging and advanced data informatics, indicating that Al and Pt preferentially substitute Sn and Cu atoms, respectively, to generate (Cu, Pt)<sub>6</sub>(Sn, Al)<sub>5</sub>. A one-dimensional (1D) kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated, and the results showed that the error of the derived mathematical model is less than 5%. Finally, the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu<sub>6</sub>Sn<sub>5</sub> was further elucidated. This work provides a feasible route for the design and development of multi-component alloy solders.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"4208 - 4225"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03200-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of intermetallic compounds (IMCs) connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect. However, the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear. Herein, we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al (wt%) using the high-throughput screening (HTS) method. The results showed that it possesses excellent welding performance with an inhibition rate over 40% on the growth of IMCs layers. For Cu6Sn5, the co-doping of Al and Pt not only greatly improves its thermodynamic stability, but also effectively suppresses the phase transition. Meanwhile, the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects. The substitution sites of Al and Pt in Cu6Sn5 have been explored using atomic resolution imaging and advanced data informatics, indicating that Al and Pt preferentially substitute Sn and Cu atoms, respectively, to generate (Cu, Pt)6(Sn, Al)5. A one-dimensional (1D) kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated, and the results showed that the error of the derived mathematical model is less than 5%. Finally, the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu6Sn5 was further elucidated. This work provides a feasible route for the design and development of multi-component alloy solders.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.