{"title":"Investigation on Structural Modification of CaCu3Ti4O12 by Eu3+ Doping and Its Correlation with Dielectric and Impedance Spectroscopy","authors":"Rajnish Kumar Ranjan, Surjeet Chahal, Manoj Bhatnagar, Parveen Kumar, Ankurava Sinha, Renu Rani","doi":"10.1134/S1063783424601929","DOIUrl":null,"url":null,"abstract":"<p>Eu-doped Calcium Copper Titanate (CCTO) ceramics were synthesized via the solid-state reaction technique and systematically characterized for their structural and dielectric properties. X-ray diffraction (XRD) and Rietveld refinement analyses confirmed that doping of Eu<sup>3+</sup> ion significantly affects the structure of the Ti–O<sub>6</sub> polyhedra, which in turn influenced their dielectric properties. Impedance spectroscopy revealed that both grain and grain boundary contributions significantly impact the overall conductivity of the Eu-doped CCTO, with the grain boundary resistance dominating at lower temperatures. The high activation energies associated with grain boundaries suggest the presence of a Schottky barrier potential, which likely contributes to reducing the dielectric loss in the material. Scaling analysis provided insights into the relaxation mechanisms associated with grains and grain boundaries, revealing distinct relaxation zones and highlighting the anisotropic nature of charge distribution at grain boundaries. Overall, the study confirms that Eu doping in CCTO ceramics enhances their dielectric properties by influencing structure of the host matrix as well as grain interior and grain boundary characteristics. These findings offer critical insights into the material’s behavior and present opportunities for optimizing CCTO-based ceramics for advanced high-performance electronic applications.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 5","pages":"413 - 421"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424601929","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Eu-doped Calcium Copper Titanate (CCTO) ceramics were synthesized via the solid-state reaction technique and systematically characterized for their structural and dielectric properties. X-ray diffraction (XRD) and Rietveld refinement analyses confirmed that doping of Eu3+ ion significantly affects the structure of the Ti–O6 polyhedra, which in turn influenced their dielectric properties. Impedance spectroscopy revealed that both grain and grain boundary contributions significantly impact the overall conductivity of the Eu-doped CCTO, with the grain boundary resistance dominating at lower temperatures. The high activation energies associated with grain boundaries suggest the presence of a Schottky barrier potential, which likely contributes to reducing the dielectric loss in the material. Scaling analysis provided insights into the relaxation mechanisms associated with grains and grain boundaries, revealing distinct relaxation zones and highlighting the anisotropic nature of charge distribution at grain boundaries. Overall, the study confirms that Eu doping in CCTO ceramics enhances their dielectric properties by influencing structure of the host matrix as well as grain interior and grain boundary characteristics. These findings offer critical insights into the material’s behavior and present opportunities for optimizing CCTO-based ceramics for advanced high-performance electronic applications.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.