Mo monoatomic doping of ReS2 quantum dots with size control for piezoelectric synergistic photocatalysis

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jin-Feng Shen, Shu-Le Huang, Mo-Ran Qin, Xin-Miao Xuan, Shao-Qiang Su, Xiao-Ming Zhang, Xin-Xing Xu, Zhi-Peng Hou, Zhang Zhang, Jun-Ming Liu
{"title":"Mo monoatomic doping of ReS2 quantum dots with size control for piezoelectric synergistic photocatalysis","authors":"Jin-Feng Shen,&nbsp;Shu-Le Huang,&nbsp;Mo-Ran Qin,&nbsp;Xin-Miao Xuan,&nbsp;Shao-Qiang Su,&nbsp;Xiao-Ming Zhang,&nbsp;Xin-Xing Xu,&nbsp;Zhi-Peng Hou,&nbsp;Zhang Zhang,&nbsp;Jun-Ming Liu","doi":"10.1007/s12598-024-03206-6","DOIUrl":null,"url":null,"abstract":"<div><p>Water purification systems based on transition metal dichalcogenides face significant challenges, including lack of reactivity under dark conditions, scarcity of catalytically active sites, and rapid recombination of photo-generated charge carriers. Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult. In this study, we present a novel approach combining molybdenum (Mo) monoatomic doping and size engineering to produce a series of Mo-ReS<sub>2</sub> quantum dots (MR QDs) with controllable dimensions. High-resolution structural characterization, first-principle calculations, and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry, thereby improving the piezoelectric properties. The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency, leading to optimized photocatalytic performance. Additionally, the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals, substantially boosting photo-sterilization efficiency. Our results demonstrate the elimination of 99.95% of <i>Escherichia coli</i> and 100.00% of <i>Staphylococcus aureus</i> within 30 min. Furthermore, we developed a self-purification system simulating water drainage, utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs, achieving piezoelectric synergistic photodegradation. This innovative approach provides a more environmentally friendly and economical method for water self-purification, paving the way for advanced water treatment technologies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"3943 - 3955"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03206-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water purification systems based on transition metal dichalcogenides face significant challenges, including lack of reactivity under dark conditions, scarcity of catalytically active sites, and rapid recombination of photo-generated charge carriers. Simultaneously increasing the number of active sites and improving charge separation efficiency has proven difficult. In this study, we present a novel approach combining molybdenum (Mo) monoatomic doping and size engineering to produce a series of Mo-ReS2 quantum dots (MR QDs) with controllable dimensions. High-resolution structural characterization, first-principle calculations, and piezo force microscopy reveal that Mo monoatomic doping enhances the lattice asymmetry, thereby improving the piezoelectric properties. The resulting piezoelectric polarization and the generated built-in electric field significantly improve charge separation efficiency, leading to optimized photocatalytic performance. Additionally, the doping strategy increases the number of active sites and improves the adsorption of intermediate radicals, substantially boosting photo-sterilization efficiency. Our results demonstrate the elimination of 99.95% of Escherichia coli and 100.00% of Staphylococcus aureus within 30 min. Furthermore, we developed a self-purification system simulating water drainage, utilizing low-frequency water streams to trigger the piezoelectric behavior of MR QDs, achieving piezoelectric synergistic photodegradation. This innovative approach provides a more environmentally friendly and economical method for water self-purification, paving the way for advanced water treatment technologies.

Graphical Abstract

具有尺寸控制的钼单原子掺杂ReS2量子点用于压电协同光催化
基于过渡金属二硫族化合物的水净化系统面临着重大挑战,包括在黑暗条件下缺乏反应性,催化活性位点的缺乏以及光生成电荷载体的快速重组。同时增加活性位点数量和提高电荷分离效率已被证明是困难的。在这项研究中,我们提出了一种结合钼(Mo)单原子掺杂和尺寸工程的新方法来生产一系列具有可控尺寸的Mo- res2量子点(MR QDs)。高分辨率结构表征、第一性原理计算和压电力显微镜显示,Mo单原子掺杂增强了晶格不对称性,从而改善了压电性能。由此产生的压电极化和产生的内置电场显著提高了电荷分离效率,从而优化了光催化性能。此外,掺杂策略增加了活性位点的数量,改善了中间自由基的吸附,大大提高了光杀菌效率。我们的研究结果表明,在30分钟内消除了99.95%的大肠杆菌和100.00%的金黄色葡萄球菌。此外,我们开发了一种模拟排水的自净化系统,利用低频水流触发MR量子点的压电行为,实现压电协同光降解。这种创新的方法为水的自净化提供了一种更加环保和经济的方法,为先进的水处理技术铺平了道路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信