Walaa Abualsunun, Amerh Aiad Alahmadi, Bayan A. Eshmawi, Osama A. A. Ahmed, Alaa Sirwi, Mahmoud A. Elfaky, Sarah O. Alreeshi, Ibtisam A. Alzahrani, Ibtihal A. Almutairi, Rumaysaa M. Gurunfula, Omaima N. Elgazayerly, Shaimaa M. Badr-Eldin
{"title":"Optimized quercetin-loaded glycerohyalurosome hydrogel: an innovative nanoplatform for enhanced wound healing","authors":"Walaa Abualsunun, Amerh Aiad Alahmadi, Bayan A. Eshmawi, Osama A. A. Ahmed, Alaa Sirwi, Mahmoud A. Elfaky, Sarah O. Alreeshi, Ibtisam A. Alzahrani, Ibtihal A. Almutairi, Rumaysaa M. Gurunfula, Omaima N. Elgazayerly, Shaimaa M. Badr-Eldin","doi":"10.1186/s43094-025-00808-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Lipidic nanovesicular systems have attracted researchers’ interest for more effective cutaneous delivery and topical pharmacological efficacy. Quercetin (QUT), a polyphenolic flavonoid known for its antioxidant and anti-inflammatory activity, suffers from poor solubility and bioavailability. The aim of this research was to develop an optimized hydrogel formulation comprising QUT-loaded hyaluronic acid (HYA)-modified glycerosomes (glycerohyalurosomes, GHEs) for effective wound management. A combination of glycerol (GLY) and HYA is being used to provide flexibility to the vesicles for better delivery through the skin; these compounds have been reported to provide benefits for wound healing. </p><h3>Results</h3><p>D-optimal design suggested fifteen formulations of QUT-GHEs which were prepared using a modified thin-film hydration method. Results showed that particle sizes ranged from 162.33 to 478.49 nm and zeta potential from −57.8 to −18.8 mV. Transmission electron microscopy confirmed successful loading of the drug into the vesicles. QUT-GHEs were integrated into hydrogel (QUT-GHE-GEL) using 1.5% hydroxypropyl methylcellulose. The pH of the QUT-GHE-GEL was recorded as 5.9 ± 0.03, which is acceptable in wound healing. In vivo studies performed on Wistar rats showed that QUT-GHE-GEL accelerated the wound-healing process compared to the untreated control and marketed product (MP)-treated groups, where a significantly higher wound contraction was observed. Histopathological examination of wound tissues revealed that QUT-GHE-GEL-treated and MP-treated groups exhibited newly sprouted capillaries and enhanced fibroblast development. </p><h3>Conclusions</h3><p>Thus, the suggested QUT-GHE-GEL formulation shows promise for effective wound-healing management. QUT-GHE-GEL enhances wound contraction and fosters tissue regeneration while modulating inflammation. The results indicate that QUT-GHE-GEL proves a prospective therapeutic option for wound care applications.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00808-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00808-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Lipidic nanovesicular systems have attracted researchers’ interest for more effective cutaneous delivery and topical pharmacological efficacy. Quercetin (QUT), a polyphenolic flavonoid known for its antioxidant and anti-inflammatory activity, suffers from poor solubility and bioavailability. The aim of this research was to develop an optimized hydrogel formulation comprising QUT-loaded hyaluronic acid (HYA)-modified glycerosomes (glycerohyalurosomes, GHEs) for effective wound management. A combination of glycerol (GLY) and HYA is being used to provide flexibility to the vesicles for better delivery through the skin; these compounds have been reported to provide benefits for wound healing.
Results
D-optimal design suggested fifteen formulations of QUT-GHEs which were prepared using a modified thin-film hydration method. Results showed that particle sizes ranged from 162.33 to 478.49 nm and zeta potential from −57.8 to −18.8 mV. Transmission electron microscopy confirmed successful loading of the drug into the vesicles. QUT-GHEs were integrated into hydrogel (QUT-GHE-GEL) using 1.5% hydroxypropyl methylcellulose. The pH of the QUT-GHE-GEL was recorded as 5.9 ± 0.03, which is acceptable in wound healing. In vivo studies performed on Wistar rats showed that QUT-GHE-GEL accelerated the wound-healing process compared to the untreated control and marketed product (MP)-treated groups, where a significantly higher wound contraction was observed. Histopathological examination of wound tissues revealed that QUT-GHE-GEL-treated and MP-treated groups exhibited newly sprouted capillaries and enhanced fibroblast development.
Conclusions
Thus, the suggested QUT-GHE-GEL formulation shows promise for effective wound-healing management. QUT-GHE-GEL enhances wound contraction and fosters tissue regeneration while modulating inflammation. The results indicate that QUT-GHE-GEL proves a prospective therapeutic option for wound care applications.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.