Multifunctional sulfonate additive induced CEI layer enables ultra-stable PEO based solid-state sodium batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jing-Chao Liu, Tao You, Yi-Fan Zhao, Feng-Quan Liu, Jie-Dong Li, Long-Long Wang, Chen Wang, Lin Li
{"title":"Multifunctional sulfonate additive induced CEI layer enables ultra-stable PEO based solid-state sodium batteries","authors":"Jing-Chao Liu,&nbsp;Tao You,&nbsp;Yi-Fan Zhao,&nbsp;Feng-Quan Liu,&nbsp;Jie-Dong Li,&nbsp;Long-Long Wang,&nbsp;Chen Wang,&nbsp;Lin Li","doi":"10.1007/s12598-024-03188-5","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethylene oxide (PEO)-based solid polymer electrolytes are considered as promising material for solid-state sodium metallic batteries (SSMBs). However, their poor interfacial stability with high-voltage cathode limits their application in high-energy–density solid-state batteries. Herein, a uniform, sulfur-containing inorganic–organic composite cathode–electrolyte interphase layer was in situ formed by the addition of sodium polyvinyl sulfonate (NaPVS). The 5 wt% NaPVS-Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP)|PEO-sodium hexauorophosphate (NaPF<sub>6</sub>)|Na battery shows a higher initial capacity of 111.2 mAh·g<sup>−1</sup> and an ultra-high capacity retention of 90.5% after 300 cycles. The 5 wt% NaPVS-Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (NVPF) |PEO-NaPF<sub>6</sub>|Na battery with the high cutoff voltage of 4.2 V showed a specific discharge capacity of 88.9 mAh·g<sup>−1</sup> at 0.5C for 100 cycles with a capacity retention of 79%, which is much better than that of the pristine-NVPF (PR-NVPF)|PEO-NaPF<sub>6</sub>|Na battery (33.2%). The addition of NaPVS not only enhances the diffusion kinetics at the interface but also improves the rate performance and stability of the battery, thus bolstering its viability for high-energy applications. In situ phase tracking further elucidates that NaPVS effectively mitigates self-discharge induced by the oxidative decomposition of PEO at high temperature. This work proposes a general strategy to maintain the structural stability of the cathode–electrolyte interface in PEO-based high-performance SSMBs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 6","pages":"3817 - 3826"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03188-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethylene oxide (PEO)-based solid polymer electrolytes are considered as promising material for solid-state sodium metallic batteries (SSMBs). However, their poor interfacial stability with high-voltage cathode limits their application in high-energy–density solid-state batteries. Herein, a uniform, sulfur-containing inorganic–organic composite cathode–electrolyte interphase layer was in situ formed by the addition of sodium polyvinyl sulfonate (NaPVS). The 5 wt% NaPVS-Na3V2(PO4)3 (NVP)|PEO-sodium hexauorophosphate (NaPF6)|Na battery shows a higher initial capacity of 111.2 mAh·g−1 and an ultra-high capacity retention of 90.5% after 300 cycles. The 5 wt% NaPVS-Na3V2(PO4)2F3 (NVPF) |PEO-NaPF6|Na battery with the high cutoff voltage of 4.2 V showed a specific discharge capacity of 88.9 mAh·g−1 at 0.5C for 100 cycles with a capacity retention of 79%, which is much better than that of the pristine-NVPF (PR-NVPF)|PEO-NaPF6|Na battery (33.2%). The addition of NaPVS not only enhances the diffusion kinetics at the interface but also improves the rate performance and stability of the battery, thus bolstering its viability for high-energy applications. In situ phase tracking further elucidates that NaPVS effectively mitigates self-discharge induced by the oxidative decomposition of PEO at high temperature. This work proposes a general strategy to maintain the structural stability of the cathode–electrolyte interface in PEO-based high-performance SSMBs.

Graphical abstract

多功能磺酸盐添加剂诱导的CEI层实现了超稳定的PEO基固态钠电池
聚氧聚乙烯(PEO)基固体聚合物电解质被认为是一种很有前途的固态金属钠电池材料。然而,它们与高压阴极的界面稳定性差,限制了它们在高能量密度固态电池中的应用。通过添加聚乙烯磺酸钠(NaPVS),原位形成了均匀的含硫无机-有机复合阴极-电解质界面层。5 wt%的NaPVS-Na3V2(PO4)3 (NVP)| peo -六自磷酸钠(NaPF6)|Na电池具有较高的初始容量111.2 mAh·g−1,300次循环后的超高容量保持率为90.5%。5 wt%的NaPVS-Na3V2(PO4)2F3 (NVPF) |PEO-NaPF6|Na电池在4.2 V的高截止电压下,在0.5C下循环100次,放电比容量为88.9 mAh·g−1,容量保留率为79%,明显优于原始的NVPF (PR-NVPF)|PEO-NaPF6|Na电池(33.2%)。NaPVS的加入不仅增强了界面处的扩散动力学,还提高了电池的速率性能和稳定性,从而增强了其在高能应用中的可行性。原位相跟踪进一步表明,NaPVS有效地减轻了PEO在高温下氧化分解引起的自放电。本研究提出了一种维持基于peo的高性能ssmb阴极-电解质界面结构稳定性的一般策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信