Enhancing Dielectric Properties of Gold Nanoparticles Attached to Acid-Treated Pristine Multiwalled Carbon Nanotubes-BaTiO3/PVDF Polymer Nanocomposites

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Kaniknun Sreejivungsa, Nutthakritta Phromviyo, Wirat Jarernboon, Kitirote Wantala, Prasit Thongbai
{"title":"Enhancing Dielectric Properties of Gold Nanoparticles Attached to Acid-Treated Pristine Multiwalled Carbon Nanotubes-BaTiO3/PVDF Polymer Nanocomposites","authors":"Kaniknun Sreejivungsa,&nbsp;Nutthakritta Phromviyo,&nbsp;Wirat Jarernboon,&nbsp;Kitirote Wantala,&nbsp;Prasit Thongbai","doi":"10.1007/s13369-024-09608-z","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the properties of polymer matrix nanocomposites, such as increasing dielectric permittivity, reducing the loss tangent, and minimizing filler content, is essential for modern electronics applications. In this work, we successfully prepared gold nanoparticles (<i>n</i>Au) attached to acid-treated pristine multiwalled carbon nanotubes (<i>n</i>Au-ACNTs) combined with BaTiO<sub>3</sub>/poly(vinylidene fluoride) (<i>n</i>Au-ACNT- BT/PVDF) polymer nanocomposites with different loading volume fractions of <i>n</i>Au-ACNT (<i>f</i><sub><i>n</i>Au-ACNT</sub>) and a fixed BT content of 2 vol%. The ACNTs used had a particle size of approximately 6–9 nm in diameter and 5 μm in length, while the <i>n</i>Au attached to the surface of ACNTs had an average size of ~ 5 nm. The BT particles had a size of around 100 nm. The morphology, microstructure, crystal structures, phase composition, and dielectric properties of the polymer nanocomposites were investigated. Notably, the dielectric permittivity of the <i>n</i>Au-ACNT-BT/PVDF nanocomposite with <i>f</i><sub><i>n</i>Au-ACNT</sub> = 0.010 was as high as ~ 814.2 (at 25 °C and 1 kHz), which is ~ 75 times higher than that of pure PVDF polymer (ε′ = 10.8). Under these conditions, the dielectric loss tangent was maintained at a low value of tanδ ~ 0.478, whereas tanδ of the nanocomposite without <i>n</i>Au nanoparticles at the same total volume fraction was 122.95. The enhanced dielectric properties of the <i>n</i>Au-ACNT-BT/PVDF nanocomposite may be attributed to interfacial polarization and the inhibition of conductivity paths of ACNTs in the polymer matrix.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 9","pages":"6853 - 6863"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09608-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the properties of polymer matrix nanocomposites, such as increasing dielectric permittivity, reducing the loss tangent, and minimizing filler content, is essential for modern electronics applications. In this work, we successfully prepared gold nanoparticles (nAu) attached to acid-treated pristine multiwalled carbon nanotubes (nAu-ACNTs) combined with BaTiO3/poly(vinylidene fluoride) (nAu-ACNT- BT/PVDF) polymer nanocomposites with different loading volume fractions of nAu-ACNT (fnAu-ACNT) and a fixed BT content of 2 vol%. The ACNTs used had a particle size of approximately 6–9 nm in diameter and 5 μm in length, while the nAu attached to the surface of ACNTs had an average size of ~ 5 nm. The BT particles had a size of around 100 nm. The morphology, microstructure, crystal structures, phase composition, and dielectric properties of the polymer nanocomposites were investigated. Notably, the dielectric permittivity of the nAu-ACNT-BT/PVDF nanocomposite with fnAu-ACNT = 0.010 was as high as ~ 814.2 (at 25 °C and 1 kHz), which is ~ 75 times higher than that of pure PVDF polymer (ε′ = 10.8). Under these conditions, the dielectric loss tangent was maintained at a low value of tanδ ~ 0.478, whereas tanδ of the nanocomposite without nAu nanoparticles at the same total volume fraction was 122.95. The enhanced dielectric properties of the nAu-ACNT-BT/PVDF nanocomposite may be attributed to interfacial polarization and the inhibition of conductivity paths of ACNTs in the polymer matrix.

酸处理原始多壁碳纳米管- batio3 /PVDF聚合物纳米复合材料上金纳米颗粒的介电性能增强
提高聚合物基纳米复合材料的介电常数、降低正切损耗、减少填料含量等性能对现代电子应用至关重要。在这项工作中,我们成功地制备了金纳米颗粒(nAu)附着在酸处理的原始多壁碳纳米管(nAu- acnt)上,并结合BaTiO3/聚偏氟乙烯(nAu- acnt - BT/PVDF)聚合物纳米复合材料,其负载的nAu- acnt (fnAu-ACNT)的体积分数不同,BT的固定含量为2 vol%。所使用的acnt的粒径约为6-9 nm,长度为5 μm,而附着在acnt表面的nAu的平均尺寸为~ 5 nm。BT颗粒的大小约为100纳米。研究了聚合物纳米复合材料的形貌、微观结构、晶体结构、相组成和介电性能。值得注意的是,当fnAu-ACNT = 0.010时,nAu-ACNT-BT/PVDF纳米复合材料的介电常数高达~ 814.2(25°C, 1 kHz),是纯PVDF聚合物(ε′= 10.8)的~ 75倍。在此条件下,介质损耗正切值维持在较低的tanδ ~ 0.478,而在相同的总体积分数下,无纳米au纳米复合材料的tanδ为122.95。nAu-ACNT-BT/PVDF纳米复合材料的介电性能的增强可能是由于界面极化和acnt在聚合物基体中的电导率路径的抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信