Iacopo Tirelli, Adrian Grille Guerra, Andrea Ianiro, Andrea Sciacchitano, Fulvio Scarano, Stefano Discetti
{"title":"Full-domain POD modes from PIV asynchronous patches","authors":"Iacopo Tirelli, Adrian Grille Guerra, Andrea Ianiro, Andrea Sciacchitano, Fulvio Scarano, Stefano Discetti","doi":"10.1007/s00348-025-04029-6","DOIUrl":null,"url":null,"abstract":"<div><p>A method is proposed to obtain full-domain spatial modes based on proper orthogonal decomposition (POD) of particle image velocimetry (PIV) measurements taken at different (overlapping) spatial locations. This situation occurs when large domains are covered by multiple non-simultaneous measurements and yet the large-scale flow field organization is to be captured. The proposed methodology leverages the definition of POD spatial modes as eigenvectors of the spatial correlation matrix, where local measurements, even when not obtained simultaneously, provide each a portion of the latter, which is then analyzed to synthesize the full-domain spatial modes. The measurement domain coverage is found to require regions overlapping by <b>50–75%</b> to yield a smooth distribution of the modes. The procedure identifies structures twice as large as each measurement patch. The technique, referred to as <i>Patch POD</i>, is applied to planar PIV data of a submerged jet flow where the effect of patching is simulated by splitting the original PIV data. Patch POD is then extended to <b><i>3D</i></b> robotic measurement around a wall-mounted cube. The results show that the patching technique enables global modal analysis over a domain covered with a multitude of non-simultaneous measurements.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-04029-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-04029-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A method is proposed to obtain full-domain spatial modes based on proper orthogonal decomposition (POD) of particle image velocimetry (PIV) measurements taken at different (overlapping) spatial locations. This situation occurs when large domains are covered by multiple non-simultaneous measurements and yet the large-scale flow field organization is to be captured. The proposed methodology leverages the definition of POD spatial modes as eigenvectors of the spatial correlation matrix, where local measurements, even when not obtained simultaneously, provide each a portion of the latter, which is then analyzed to synthesize the full-domain spatial modes. The measurement domain coverage is found to require regions overlapping by 50–75% to yield a smooth distribution of the modes. The procedure identifies structures twice as large as each measurement patch. The technique, referred to as Patch POD, is applied to planar PIV data of a submerged jet flow where the effect of patching is simulated by splitting the original PIV data. Patch POD is then extended to 3D robotic measurement around a wall-mounted cube. The results show that the patching technique enables global modal analysis over a domain covered with a multitude of non-simultaneous measurements.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.