Yu-Ming Guan, Hang Gao, Wen-Bo Xu, Peiyang Su, Tingxia Zhou, Ting-Zheng Xie, Mingjian Wang, Hongguang Luo and Pingshan Wang
{"title":"Nanoarchitectonics of a covalent organic supramolecular cage (COSC) for fluorescent visual detection of macrolides†","authors":"Yu-Ming Guan, Hang Gao, Wen-Bo Xu, Peiyang Su, Tingxia Zhou, Ting-Zheng Xie, Mingjian Wang, Hongguang Luo and Pingshan Wang","doi":"10.1039/D4RA09077B","DOIUrl":null,"url":null,"abstract":"<p >Macrolides, a major group of antibiotic pollutants, have been widely observed in water and sediments. For onsite identification of macrolides in water environments, we designed and synthesized a quadrangular prism-shaped covalent organic supramolecular cage (COSC) <em>via</em> an aldol-amine condensation. Multiple hydrogen bonding sites were introduced into the building blocks to increase host–guest interactions. Meanwhile, by introducing a stimuli-sensitive module, TPE, the fluorescence of the supramolecule changes upon encapsulation of the clarithromycin guest which was a type of macrolides. The cage structure was fully characterized using NMR and high-resolution ESI mass spectrometry. The fluorescence recognition process and detection limitations of the cage for clarithromycin were investigated using NMR, UV-vis, and fluorescence spectroscopy. This study expands the application of precisely designed covalent supramolecular cages for monitoring antibiotic-based environmental pollutants.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 20","pages":" 15476-15479"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra09077b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra09077b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrolides, a major group of antibiotic pollutants, have been widely observed in water and sediments. For onsite identification of macrolides in water environments, we designed and synthesized a quadrangular prism-shaped covalent organic supramolecular cage (COSC) via an aldol-amine condensation. Multiple hydrogen bonding sites were introduced into the building blocks to increase host–guest interactions. Meanwhile, by introducing a stimuli-sensitive module, TPE, the fluorescence of the supramolecule changes upon encapsulation of the clarithromycin guest which was a type of macrolides. The cage structure was fully characterized using NMR and high-resolution ESI mass spectrometry. The fluorescence recognition process and detection limitations of the cage for clarithromycin were investigated using NMR, UV-vis, and fluorescence spectroscopy. This study expands the application of precisely designed covalent supramolecular cages for monitoring antibiotic-based environmental pollutants.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.