Yuehan Qian, Shanling Lu, Yunmeng Jiang, Xu Xu, Fei Fu, Xujuan Huang, Hongxiao Wang and He Liu
{"title":"Exceptional mechanical robust and self-healable rosin-based elastomer through high steric hindrance rigid structures†","authors":"Yuehan Qian, Shanling Lu, Yunmeng Jiang, Xu Xu, Fei Fu, Xujuan Huang, Hongxiao Wang and He Liu","doi":"10.1039/D5QM00127G","DOIUrl":null,"url":null,"abstract":"<p >The outstanding mechanical properties and self-healing properties of materials are theoretically mutually exclusive, so developing elastomers that combine these two characteristics is a significant challenge. Herein, a high-strength, tough, and room-temperature self-healing rosin-based polyurethane thermoplastic elastomer with a stress of 45.25 MPa, a substantial fracture strain of 1647%, and a superior toughness of 326.65 MJ m<small><sup>−3</sup></small> was prepared by molecular design. The introduction of rosin increases the free volume of polyurethane network segments, thereby promoting the breaking and recombination of molecular interactions. This innovative design enables the material to exhibit good ductility and room temperature self-healing properties. At the same time, the introduction of the rosin structure enhances the interaction force between segments, thereby significantly improving the mechanical properties of the material. Finally, a sensor constructed using the elastomer and liquid metal could detect human torso movements. This study presents a viable strategy for the future development of polymers that possess both room-temperature self-healing capabilities and excellent mechanical properties through the utilization of rosin.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 10","pages":" 1559-1567"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00127g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The outstanding mechanical properties and self-healing properties of materials are theoretically mutually exclusive, so developing elastomers that combine these two characteristics is a significant challenge. Herein, a high-strength, tough, and room-temperature self-healing rosin-based polyurethane thermoplastic elastomer with a stress of 45.25 MPa, a substantial fracture strain of 1647%, and a superior toughness of 326.65 MJ m−3 was prepared by molecular design. The introduction of rosin increases the free volume of polyurethane network segments, thereby promoting the breaking and recombination of molecular interactions. This innovative design enables the material to exhibit good ductility and room temperature self-healing properties. At the same time, the introduction of the rosin structure enhances the interaction force between segments, thereby significantly improving the mechanical properties of the material. Finally, a sensor constructed using the elastomer and liquid metal could detect human torso movements. This study presents a viable strategy for the future development of polymers that possess both room-temperature self-healing capabilities and excellent mechanical properties through the utilization of rosin.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.