Murad Dawood;Sicong Pan;Nils Dengler;Siqi Zhou;Angela P. Schoellig;Maren Bennewitz
{"title":"Safe Multi-Agent Reinforcement Learning for Behavior-Based Cooperative Navigation","authors":"Murad Dawood;Sicong Pan;Nils Dengler;Siqi Zhou;Angela P. Schoellig;Maren Bennewitz","doi":"10.1109/LRA.2025.3560830","DOIUrl":null,"url":null,"abstract":"In this letter, we address the problem of behavior-based cooperative navigation of mobile robots usingsafe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without individual reference targets for the robots, using a single target for the formation's centroid. This eliminates the complexities involved in having several path planners to control a team of robots. To ensure safety, our MARL framework uses model predictive control (MPC) to prevent actions that could lead to collisions during training and execution. We demonstrate the effectiveness of our method in simulation and on real robots, achieving safe behavior-based cooperative navigation without using individual reference targets, with zero collisions, and faster target reaching compared to baselines. Finally, we study the impact of MPC safety filters on the learning process, revealing that we achieve faster convergence during training and we show that our approach can be safely deployed on real robots, even during early stages of the training.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"6256-6263"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964685/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we address the problem of behavior-based cooperative navigation of mobile robots usingsafe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without individual reference targets for the robots, using a single target for the formation's centroid. This eliminates the complexities involved in having several path planners to control a team of robots. To ensure safety, our MARL framework uses model predictive control (MPC) to prevent actions that could lead to collisions during training and execution. We demonstrate the effectiveness of our method in simulation and on real robots, achieving safe behavior-based cooperative navigation without using individual reference targets, with zero collisions, and faster target reaching compared to baselines. Finally, we study the impact of MPC safety filters on the learning process, revealing that we achieve faster convergence during training and we show that our approach can be safely deployed on real robots, even during early stages of the training.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.