Chenran Wang , Lin Tan , Maohua Huang , Yuning Lin , Minxiang Cai , Lijuan Deng , Xinpeng Hu , Shenghui Qiu , Xiaoting Chen , Yiming Zhang , Xiaomei Luo , Changzheng Shi , Minfeng Chen , Wencai Ye , Junqiu Zhang , Dongmei Zhang , Xiangning Liu
{"title":"Cancer ENO2 Induces Histone Lactylation-Mediated M2 Macrophage Polarization and Facilitates Metastasis of Head and Neck Squamous Cell Carcinoma","authors":"Chenran Wang , Lin Tan , Maohua Huang , Yuning Lin , Minxiang Cai , Lijuan Deng , Xinpeng Hu , Shenghui Qiu , Xiaoting Chen , Yiming Zhang , Xiaomei Luo , Changzheng Shi , Minfeng Chen , Wencai Ye , Junqiu Zhang , Dongmei Zhang , Xiangning Liu","doi":"10.1016/j.eng.2024.11.036","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic reprogramming reshapes the tumor microenvironment (TME) and facilitates metastasis, but its molecular mechanisms remain incompletely understood. Here, we identified enolase 2 (ENO2), a critical glycolytic enzyme, as being associated with lymphatic metastasis in head and neck squamous cell carcinoma (HNSCC). Mechanistically, phosphoenolpyruvate (PEP), the metabolite secreted by ENO2-expressing HNSCC cells, drove histone H3 lysine 18 lactylation (H3K18la)-mediated M2 polarization in macrophages, which, in turn, enhanced the epithelial–mesenchymal transition (EMT) and invasiveness of HNSCC cells. Pharmacological inhibition of ENO2 with POMHEX effectively reversed M2 macrophage polarization and inhibited HNSCC lymphatic metastasis. Collectively, our findings underscore the prognostic significance of ENO2 and highlight its potential as a therapeutic target for metastatic HNSCC. Furthermore, we reveal a previously underappreciated role of PEP in modulating the tumor immune microenvironment and tumor metastasis via epigenetic modification.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"48 ","pages":"Pages 262-276"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809925000013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic reprogramming reshapes the tumor microenvironment (TME) and facilitates metastasis, but its molecular mechanisms remain incompletely understood. Here, we identified enolase 2 (ENO2), a critical glycolytic enzyme, as being associated with lymphatic metastasis in head and neck squamous cell carcinoma (HNSCC). Mechanistically, phosphoenolpyruvate (PEP), the metabolite secreted by ENO2-expressing HNSCC cells, drove histone H3 lysine 18 lactylation (H3K18la)-mediated M2 polarization in macrophages, which, in turn, enhanced the epithelial–mesenchymal transition (EMT) and invasiveness of HNSCC cells. Pharmacological inhibition of ENO2 with POMHEX effectively reversed M2 macrophage polarization and inhibited HNSCC lymphatic metastasis. Collectively, our findings underscore the prognostic significance of ENO2 and highlight its potential as a therapeutic target for metastatic HNSCC. Furthermore, we reveal a previously underappreciated role of PEP in modulating the tumor immune microenvironment and tumor metastasis via epigenetic modification.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.