A computer vision-based model for predicting the glass-forming ability of alloys without feature engineering

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Gongmin Wei, Yongchao Liang, Yuancheng Lin, Xin Fang, Jie Li, Qian Chen, Yun-jun Ruan, Jia-mu Zhao, Shengli He, Junjie Zeng
{"title":"A computer vision-based model for predicting the glass-forming ability of alloys without feature engineering","authors":"Gongmin Wei,&nbsp;Yongchao Liang,&nbsp;Yuancheng Lin,&nbsp;Xin Fang,&nbsp;Jie Li,&nbsp;Qian Chen,&nbsp;Yun-jun Ruan,&nbsp;Jia-mu Zhao,&nbsp;Shengli He,&nbsp;Junjie Zeng","doi":"10.1016/j.physb.2025.417352","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional empirical rule-based methods for metallic glass (MG) design exhibit limitations. Machine learning (ML) prediction of glass-forming ability (GFA) offers an effective solution. Most existing ML models require feature engineering, which introduces additional workloads. This study exclusively uses elemental composition as input and constructs images via outer product-based transformations to map elemental interactions, surpassing prior transformation methods. We enhanced the ResNet18 model with parallel multi-scale convolution, improving prediction performance without feature engineering. Results demonstrate the model's superiority over alternatives. To address data scarcity in deep learning (DL), Mixup outperformed Gaussian noise (GN) in data augmentation, achieving a coefficient of determination (<span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span>) of 0.86. Finally, the model's generalization capability was validated through comparisons between predicted and experimental values in Mg-Cu-Gd and Zr-Al-Cu alloy systems.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417352"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004697","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional empirical rule-based methods for metallic glass (MG) design exhibit limitations. Machine learning (ML) prediction of glass-forming ability (GFA) offers an effective solution. Most existing ML models require feature engineering, which introduces additional workloads. This study exclusively uses elemental composition as input and constructs images via outer product-based transformations to map elemental interactions, surpassing prior transformation methods. We enhanced the ResNet18 model with parallel multi-scale convolution, improving prediction performance without feature engineering. Results demonstrate the model's superiority over alternatives. To address data scarcity in deep learning (DL), Mixup outperformed Gaussian noise (GN) in data augmentation, achieving a coefficient of determination (R2) of 0.86. Finally, the model's generalization capability was validated through comparisons between predicted and experimental values in Mg-Cu-Gd and Zr-Al-Cu alloy systems.
基于计算机视觉的非特征工程合金非晶成形能力预测模型
传统的基于经验规则的金属玻璃(MG)设计方法存在局限性。机器学习(ML)预测玻璃形成能力(GFA)提供了一个有效的解决方案。大多数现有的ML模型都需要特征工程,这会引入额外的工作负载。本研究完全使用元素组成作为输入,并通过外部基于产品的转换构建图像来映射元素相互作用,超越了先前的转换方法。我们用并行多尺度卷积增强了ResNet18模型,在没有特征工程的情况下提高了预测性能。结果表明,该模型优于其他方案。为了解决深度学习(DL)中的数据稀缺性问题,Mixup在数据增强方面优于高斯噪声(GN),实现了0.86的决定系数(R2)。最后,通过Mg-Cu-Gd和Zr-Al-Cu合金体系的预测值与实验值的比较,验证了模型的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信