Averaging principle for a class of distribution dependent slow-fast stochastic differential equations driven by fractional Brownian motion and standard Brownian motion

IF 1.2 3区 数学 Q1 MATHEMATICS
Shitao Liu
{"title":"Averaging principle for a class of distribution dependent slow-fast stochastic differential equations driven by fractional Brownian motion and standard Brownian motion","authors":"Shitao Liu","doi":"10.1016/j.jmaa.2025.129628","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a class of distribution dependent slow-fast stochastic differential equations driven simultaneously by multidimensional standard Brownian motions and a multidimensional fractional Brownian motion with Hurst parameter <span><math><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>H</mi><mo>&lt;</mo><mn>1</mn></math></span>. Existence and uniqueness of the system is proved by using the Picard iteration. Moreover, strong averaging principle is studied to show that slow variable of the system can be efficiently approximated by solution of associated averaged stochastic differential equation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129628"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004093","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a class of distribution dependent slow-fast stochastic differential equations driven simultaneously by multidimensional standard Brownian motions and a multidimensional fractional Brownian motion with Hurst parameter 1/2<H<1. Existence and uniqueness of the system is proved by using the Picard iteration. Moreover, strong averaging principle is studied to show that slow variable of the system can be efficiently approximated by solution of associated averaged stochastic differential equation.
分数布朗运动和标准布朗运动驱动的一类与分布相关的慢速随机微分方程的平均原理
研究了一类由多维标准布朗运动和具有Hurst参数1/2<;H<;1的多维分数布朗运动同时驱动的与分布相关的慢速随机微分方程。利用Picard迭代证明了系统的存在唯一性。此外,研究了强平均原理,表明系统的慢变量可以通过求解相关的平均随机微分方程来有效地逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信