Band Gap Reduction in Lead Bismuth Niobate: Impact of Cerium Substitution in Aurivillius-type Structures on Photocatalytic Activity

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rachanon Klondon , Anurak Waehayee , Praphaiphon Phonsuksawang , Panupol Untarabut , Suttipong Wannapaiboon , Suwit Suthirakun , Chun-Hu Chen , Theeranun Siritanon
{"title":"Band Gap Reduction in Lead Bismuth Niobate: Impact of Cerium Substitution in Aurivillius-type Structures on Photocatalytic Activity","authors":"Rachanon Klondon ,&nbsp;Anurak Waehayee ,&nbsp;Praphaiphon Phonsuksawang ,&nbsp;Panupol Untarabut ,&nbsp;Suttipong Wannapaiboon ,&nbsp;Suwit Suthirakun ,&nbsp;Chun-Hu Chen ,&nbsp;Theeranun Siritanon","doi":"10.1016/j.materresbull.2025.113541","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient photocatalysts for environmental remediation remains a critical challenge, especially for degrading toxic organic pollutants. Aurivillius oxides are promising candidates due to their layered structures and chemical tunability. However, strategies to optimize their photocatalytic activity require further exploration. Here, we demonstrate that aliovalent Ce substitution in PbBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> (PBNO) significantly enhances its photocatalytic performance. The optimized 20 mol% Ce composition shows a 2.6-fold increase in methylene blue degradation efficiency compared to pristine PBNO. Experimental characterizations and first-principles calculations reveal that Ce incorporation induces coupled cation substitution—Ce replaces Pb, and the displaced Pb partially occupies Bi sites. This redistribution modifies the electronic structure by reducing the band gap, introducing Ce<sup>3+</sup>/Ce<sup>4+</sup> redox centers, and improving charge separation. Free radical quenching experiments and band alignment analysis further elucidate the degradation mechanism. This study provides insights into cation substitution in Aurivillius oxides and highlights a promising strategy for designing photocatalysts for water purification.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"191 ","pages":"Article 113541"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002491","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient photocatalysts for environmental remediation remains a critical challenge, especially for degrading toxic organic pollutants. Aurivillius oxides are promising candidates due to their layered structures and chemical tunability. However, strategies to optimize their photocatalytic activity require further exploration. Here, we demonstrate that aliovalent Ce substitution in PbBi2Nb2O9 (PBNO) significantly enhances its photocatalytic performance. The optimized 20 mol% Ce composition shows a 2.6-fold increase in methylene blue degradation efficiency compared to pristine PBNO. Experimental characterizations and first-principles calculations reveal that Ce incorporation induces coupled cation substitution—Ce replaces Pb, and the displaced Pb partially occupies Bi sites. This redistribution modifies the electronic structure by reducing the band gap, introducing Ce3+/Ce4+ redox centers, and improving charge separation. Free radical quenching experiments and band alignment analysis further elucidate the degradation mechanism. This study provides insights into cation substitution in Aurivillius oxides and highlights a promising strategy for designing photocatalysts for water purification.

Abstract Image

铌酸铅铋带隙的还原:aurivillius型结构中铈取代对光催化活性的影响
开发用于环境修复的高效光催化剂仍然是一个严峻的挑战,特别是降解有毒有机污染物。由于其层状结构和化学可调性,氧化金是很有前途的候选者。然而,优化其光催化活性的策略还需要进一步探索。在这里,我们证明了在PbBi2Nb2O9 (PBNO)中共价Ce取代显著提高了其光催化性能。优化后的20 mol% Ce组分对亚甲基蓝的降解效率比原始PBNO提高2.6倍。实验表征和第一性原理计算表明,Ce掺入诱导耦合阳离子取代- Ce取代Pb,而置换的Pb部分占据Bi位。这种再分配通过减小带隙、引入Ce3+/Ce4+氧化还原中心和改善电荷分离来改变电子结构。自由基猝灭实验和能带对准分析进一步阐明了降解机理。该研究提供了对Aurivillius氧化物阳离子取代的见解,并强调了设计用于水净化的光催化剂的有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信