Experimental investigation on biocementation materials in earthen heritage reinforcement

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS
Jinquan Shi , Lei Zhang , Kebin Ren , Hao Cui , Yang Yang , Yuanjian Liu , Lin Ye , Jianwei Zhang
{"title":"Experimental investigation on biocementation materials in earthen heritage reinforcement","authors":"Jinquan Shi ,&nbsp;Lei Zhang ,&nbsp;Kebin Ren ,&nbsp;Hao Cui ,&nbsp;Yang Yang ,&nbsp;Yuanjian Liu ,&nbsp;Lin Ye ,&nbsp;Jianwei Zhang","doi":"10.1016/j.gete.2025.100682","DOIUrl":null,"url":null,"abstract":"<div><div>The reinforcement and repair materials for earthen sites have high requirements for strength, resistance to deterioration, and aesthetic coordination. In this study, the enzyme-induced carbonate precipitation (EICP) and the microbially induced carbonate precipitation (MICP) techniques were used to reinforce the earthen site soil. The applicability of EICP and MICP for stabilizing earthen sites soil was investigated through static contact angle tests, disintegration tests and colorimetry tests. In addition, the improvement of mechanical properties of biotreated earthen sites soil was examined by unconfined compression strength tests. The tests results show that MICP and EICP techniques could improve the mechanical characteristics and water-stability properties of the earthen sites soil. With the increase in cementing solution concentration, the effectiveness of EICP was enhanced, while the water-stability and hydrophobicity of MICP-treated soils increased first and then decreased due to the influences of organic matter and soluble salts. EICP and MICP techniques showed different performance in reinforcing effects on calcium carbonate content, shear wave velocity, unconfined compressive peak strength, total disintegration time, and static contact angle. This study is expected to contribute valuable insights to the conservation of earthen heritage site using bio-based methods.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100682"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000474","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The reinforcement and repair materials for earthen sites have high requirements for strength, resistance to deterioration, and aesthetic coordination. In this study, the enzyme-induced carbonate precipitation (EICP) and the microbially induced carbonate precipitation (MICP) techniques were used to reinforce the earthen site soil. The applicability of EICP and MICP for stabilizing earthen sites soil was investigated through static contact angle tests, disintegration tests and colorimetry tests. In addition, the improvement of mechanical properties of biotreated earthen sites soil was examined by unconfined compression strength tests. The tests results show that MICP and EICP techniques could improve the mechanical characteristics and water-stability properties of the earthen sites soil. With the increase in cementing solution concentration, the effectiveness of EICP was enhanced, while the water-stability and hydrophobicity of MICP-treated soils increased first and then decreased due to the influences of organic matter and soluble salts. EICP and MICP techniques showed different performance in reinforcing effects on calcium carbonate content, shear wave velocity, unconfined compressive peak strength, total disintegration time, and static contact angle. This study is expected to contribute valuable insights to the conservation of earthen heritage site using bio-based methods.
生物胶结材料在土质遗产加固中的试验研究
土建场地的加固和修复材料对强度、抗劣性和审美协调性有很高的要求。本研究采用酶诱导碳酸盐沉淀(EICP)和微生物诱导碳酸盐沉淀(MICP)技术对场地土进行加固。通过静态接触角试验、崩解试验和比色试验,考察了EICP和MICP在固土场土中的适用性。此外,通过无侧限抗压强度试验考察了生物处理后土的力学性能改善情况。试验结果表明,MICP和EICP技术可以改善场地土的力学特性和水稳定性。随着胶结液浓度的增加,EICP的有效性增强,而受有机质和可溶性盐的影响,micp处理土壤的水稳定性和疏水性先增加后降低。EICP和MICP技术对碳酸钙含量、剪切波速、无侧限抗压峰值强度、总崩解时间和静态接触角的补强效果不同。该研究有望为利用生物方法保护土遗址提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信