Jessica Da Silva , Ermelindo C. Leal , Ana Gomes , Paula Gomes , Daniela Calheiros , Teresa Gonçalves , Eugénia Carvalho , Eduardo A. Silva
{"title":"Alginate-based hydrogels for sustained antimicrobial peptide delivery to enhance wound healing in diabetes","authors":"Jessica Da Silva , Ermelindo C. Leal , Ana Gomes , Paula Gomes , Daniela Calheiros , Teresa Gonçalves , Eugénia Carvalho , Eduardo A. Silva","doi":"10.1016/j.bioadv.2025.214337","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic foot ulcers (DFUs) are the leading cause of non-traumatic amputations, and its efficient management remains a clinical challenge, particularly in treating severe infections. Current treatment strategies often fail to address the multifactorial nature of DFUs. Combining antimicrobial peptides (AMPs) with the intrinsic properties of alginate hydrogels offers a promising solution for handling the complex etiology of DFUs. In this study, we designed alginate-based hydrogels for delivery of AMPs, namely the AMPs human β-defensin 2 (hBD-2) and PP4-3.1, to enhance diabetic wound healing. The hydrogels exhibited high storage modulus, low swelling ratio, and a nanometric porous structure, enabling sustained AMP release for over three days. Rheology analyses further confirmed their stability across pH 6 to 8. <em>In vitro</em>, hBD-2 hydrogels displayed excellent biocompatibility and promoted better cell migration than PP4-3.1 hydrogels, for up to 48 h. Thus, hBD-2 hydrogels were used in a streptozotocin-induced diabetic mouse model of wound healing. The hBD-2 hydrogels significantly accelerated wound closure and improved wound maturation, enhancing re-epithelialization and tissue remodeling, compared to controls. Furthermore, hBD-2 hydrogels reduced the microbial load from the wounds and attenuated inflammation at the wound site by decreasing the number of M1-like macrophages, M1/M2 ratio, and CD3<sup>+</sup> cells. Lastly, a pro-reparative environment was promoted through a decrease in reactive oxygen species (ROS) levels, and an increase in neovascularization and collagen deposition. Altogether, these findings suggest that hBD-2 alginate hydrogels hold promise as a novel therapeutic option for managing DFUs, offering a combined anti-inflammatory, ROS-scavenging and tissue-regenerative effect.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"175 ","pages":"Article 214337"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825001645","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot ulcers (DFUs) are the leading cause of non-traumatic amputations, and its efficient management remains a clinical challenge, particularly in treating severe infections. Current treatment strategies often fail to address the multifactorial nature of DFUs. Combining antimicrobial peptides (AMPs) with the intrinsic properties of alginate hydrogels offers a promising solution for handling the complex etiology of DFUs. In this study, we designed alginate-based hydrogels for delivery of AMPs, namely the AMPs human β-defensin 2 (hBD-2) and PP4-3.1, to enhance diabetic wound healing. The hydrogels exhibited high storage modulus, low swelling ratio, and a nanometric porous structure, enabling sustained AMP release for over three days. Rheology analyses further confirmed their stability across pH 6 to 8. In vitro, hBD-2 hydrogels displayed excellent biocompatibility and promoted better cell migration than PP4-3.1 hydrogels, for up to 48 h. Thus, hBD-2 hydrogels were used in a streptozotocin-induced diabetic mouse model of wound healing. The hBD-2 hydrogels significantly accelerated wound closure and improved wound maturation, enhancing re-epithelialization and tissue remodeling, compared to controls. Furthermore, hBD-2 hydrogels reduced the microbial load from the wounds and attenuated inflammation at the wound site by decreasing the number of M1-like macrophages, M1/M2 ratio, and CD3+ cells. Lastly, a pro-reparative environment was promoted through a decrease in reactive oxygen species (ROS) levels, and an increase in neovascularization and collagen deposition. Altogether, these findings suggest that hBD-2 alginate hydrogels hold promise as a novel therapeutic option for managing DFUs, offering a combined anti-inflammatory, ROS-scavenging and tissue-regenerative effect.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!