Neural operators learn the local physics of magnetohydrodynamics

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Taeyoung Kim , Youngsoo Ha , Myungjoo Kang
{"title":"Neural operators learn the local physics of magnetohydrodynamics","authors":"Taeyoung Kim ,&nbsp;Youngsoo Ha ,&nbsp;Myungjoo Kang","doi":"10.1016/j.compfluid.2025.106661","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetohydrodynamics (MHD) plays a pivotal role in describing the dynamics of plasma and conductive fluids, essential for understanding phenomena such as the structure and evolution of stars and galaxies, and in nuclear fusion for plasma motion through ideal MHD equations. Solving these hyperbolic PDEs requires sophisticated numerical methods, presenting computational challenges due to complex structures and high costs. Recent advances introduce neural operators like the Fourier Neural Operator (FNO) as surrogate models for traditional numerical analysis. This study proposes a modified Flux Neural Operator (Flux NO) model to approximate the numerical flux of ideal MHD, offering a novel approach with enhanced generalization capabilities and significant computational efficiency. Our methodology adapts the Flux NO to process each physical quantity individually and incorporates loss functions ensuring total variation diminishing (TVD) property and divergence freeness for numerical stability. The proposed method achieves superior generalization beyond sampled distributions compared to existing neural operators and demonstrates computation speeds 25 times faster than the reference numerical scheme.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"297 ","pages":"Article 106661"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001215","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetohydrodynamics (MHD) plays a pivotal role in describing the dynamics of plasma and conductive fluids, essential for understanding phenomena such as the structure and evolution of stars and galaxies, and in nuclear fusion for plasma motion through ideal MHD equations. Solving these hyperbolic PDEs requires sophisticated numerical methods, presenting computational challenges due to complex structures and high costs. Recent advances introduce neural operators like the Fourier Neural Operator (FNO) as surrogate models for traditional numerical analysis. This study proposes a modified Flux Neural Operator (Flux NO) model to approximate the numerical flux of ideal MHD, offering a novel approach with enhanced generalization capabilities and significant computational efficiency. Our methodology adapts the Flux NO to process each physical quantity individually and incorporates loss functions ensuring total variation diminishing (TVD) property and divergence freeness for numerical stability. The proposed method achieves superior generalization beyond sampled distributions compared to existing neural operators and demonstrates computation speeds 25 times faster than the reference numerical scheme.
神经算子学习磁流体力学的局部物理
磁流体动力学(MHD)在描述等离子体和导电流体的动力学方面起着关键作用,对于理解恒星和星系的结构和演化等现象至关重要,并且通过理想的磁流体动力学方程进行等离子体运动的核聚变。求解这些双曲偏微分方程需要复杂的数值方法,由于结构复杂和成本高,这给计算带来了挑战。近年来,傅里叶神经算子(FNO)等神经算子被引入传统数值分析的替代模型。本文提出了一种改进的通量神经算子(Flux NO)模型来近似理想MHD的数值通量,提供了一种具有增强泛化能力和显著计算效率的新方法。我们的方法使通量NO单独处理每个物理量,并结合损失函数,确保总变差递减(TVD)特性和散度自由,以保证数值稳定性。与现有的神经算子相比,该方法实现了超越采样分布的优越泛化,计算速度比参考数值方案快25倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信