A lightweight hierarchical feature fusion network for surgical instrument segmentation in internet of medical things

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tahir Mahmood, Ganbayar Batchuluun, Seung Gu Kim, Jung Soo Kim, Kang Ryoung Park
{"title":"A lightweight hierarchical feature fusion network for surgical instrument segmentation in internet of medical things","authors":"Tahir Mahmood,&nbsp;Ganbayar Batchuluun,&nbsp;Seung Gu Kim,&nbsp;Jung Soo Kim,&nbsp;Kang Ryoung Park","doi":"10.1016/j.inffus.2025.103303","DOIUrl":null,"url":null,"abstract":"<div><div>Minimally invasive surgeries (MIS) enhance patient outcomes but pose challenges such as limited visibility, complex hand-eye coordination, and manual endoscope control. The rise of the Internet of Medical Things (IoMT) and telesurgery further demands efficient and lightweight solutions. To address these limitations, we propose a novel lightweight hierarchical feature fusion network (LHFF-Net) for surgical instrument segmentation. LHFF-Net integrates high-, mid-, and low-level encoder features through three novel modules: the multiscale feature aggregation (MFA) module which can capture fine-grained and coarse features across scales, the enhanced spatial attention (ESA) module, prioritizing critical spatial regions, and the enhanced edge module (EEM), refining boundary delineation.</div><div>The proposed model was evaluated on two benchmark datasets, Kvasir-Instrument and UW-Sinus-Surgery, achieving mean Dice coefficients (mDC) of 97.87 % and 88.83 %, respectively, along with mean intersection over union (mIOU) scores of 95.87 % and 84.33 %. These results highlight LHFF-Net’s ability to deliver high segmentation accuracy while maintaining computational efficiency with only 2.2 million parameters. This combination of performance and efficiency makes LHFF-Net a robust solution for IoMT applications, enabling real-time telesurgery and driving innovations in healthcare.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"123 ","pages":"Article 103303"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525003768","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Minimally invasive surgeries (MIS) enhance patient outcomes but pose challenges such as limited visibility, complex hand-eye coordination, and manual endoscope control. The rise of the Internet of Medical Things (IoMT) and telesurgery further demands efficient and lightweight solutions. To address these limitations, we propose a novel lightweight hierarchical feature fusion network (LHFF-Net) for surgical instrument segmentation. LHFF-Net integrates high-, mid-, and low-level encoder features through three novel modules: the multiscale feature aggregation (MFA) module which can capture fine-grained and coarse features across scales, the enhanced spatial attention (ESA) module, prioritizing critical spatial regions, and the enhanced edge module (EEM), refining boundary delineation.
The proposed model was evaluated on two benchmark datasets, Kvasir-Instrument and UW-Sinus-Surgery, achieving mean Dice coefficients (mDC) of 97.87 % and 88.83 %, respectively, along with mean intersection over union (mIOU) scores of 95.87 % and 84.33 %. These results highlight LHFF-Net’s ability to deliver high segmentation accuracy while maintaining computational efficiency with only 2.2 million parameters. This combination of performance and efficiency makes LHFF-Net a robust solution for IoMT applications, enabling real-time telesurgery and driving innovations in healthcare.
面向医疗物联网手术器械分割的轻量级分层特征融合网络
微创手术(MIS)提高了患者的预后,但也带来了一些挑战,如能见度有限,复杂的手眼协调和手动内窥镜控制。医疗物联网(IoMT)和远程手术的兴起进一步要求高效、轻量级的解决方案。为了解决这些限制,我们提出了一种新的轻量级分层特征融合网络(LHFF-Net)用于手术器械分割。LHFF-Net通过三个新颖的模块集成了高、中、低层编码器特征:多尺度特征聚合(MFA)模块(可以捕获跨尺度的细粒度和粗粒度特征)、增强空间注意(ESA)模块(优先考虑关键空间区域)和增强边缘模块(EEM)(细化边界描绘)。在Kvasir-Instrument和UW-Sinus-Surgery两个基准数据集上对所提出的模型进行了评估,平均Dice系数(mDC)分别为97.87%和88.83%,平均交联分数(mIOU)分别为95.87%和84.33%。这些结果突出了LHFF-Net能够在仅使用220万个参数的情况下提供高分割精度,同时保持计算效率。这种性能和效率的结合使LHFF-Net成为IoMT应用程序的强大解决方案,可实现实时远程手术并推动医疗保健领域的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信