An oracle gradient regularized Newton method for quadratic measurements regression

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jun Fan , Jie Sun , Ailing Yan , Shenglong Zhou
{"title":"An oracle gradient regularized Newton method for quadratic measurements regression","authors":"Jun Fan ,&nbsp;Jie Sun ,&nbsp;Ailing Yan ,&nbsp;Shenglong Zhou","doi":"10.1016/j.acha.2025.101775","DOIUrl":null,"url":null,"abstract":"<div><div>Recovering an unknown signal from quadratic measurements has gained popularity due to its wide range of applications, including phase retrieval, fusion frame phase retrieval, and positive operator-valued measures. In this paper, we employ a least squares approach to reconstruct the signal and establish its non-asymptotic statistical properties. Our analysis shows that the estimator perfectly recovers the true signal in the noiseless case, while the error between the estimator and the true signal is bounded by <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>p</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> in the noisy case, where <em>n</em> is the number of measurements and <em>p</em> is the dimension of the signal. We then develop a two-phase algorithm, gradient regularized Newton method (GRNM), to solve the least squares problem. It is proven that the first phase terminates within finitely many steps, and the sequence generated in the second phase converges to a unique local minimum at a superlinear rate under certain mild conditions. Beyond these deterministic results, GRNM is capable of exactly reconstructing the true signal in the noiseless case and achieving the stated error rate with a high probability in the noisy case. Numerical experiments demonstrate that GRNM offers a high level of recovery capability and accuracy as well as fast computational speed.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"78 ","pages":"Article 101775"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000296","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Recovering an unknown signal from quadratic measurements has gained popularity due to its wide range of applications, including phase retrieval, fusion frame phase retrieval, and positive operator-valued measures. In this paper, we employ a least squares approach to reconstruct the signal and establish its non-asymptotic statistical properties. Our analysis shows that the estimator perfectly recovers the true signal in the noiseless case, while the error between the estimator and the true signal is bounded by O(plog(1+2n)/n) in the noisy case, where n is the number of measurements and p is the dimension of the signal. We then develop a two-phase algorithm, gradient regularized Newton method (GRNM), to solve the least squares problem. It is proven that the first phase terminates within finitely many steps, and the sequence generated in the second phase converges to a unique local minimum at a superlinear rate under certain mild conditions. Beyond these deterministic results, GRNM is capable of exactly reconstructing the true signal in the noiseless case and achieving the stated error rate with a high probability in the noisy case. Numerical experiments demonstrate that GRNM offers a high level of recovery capability and accuracy as well as fast computational speed.
二次测量回归的oracle梯度正则牛顿法
从二次测量中恢复未知信号由于其广泛的应用而受到欢迎,包括相位恢复,融合帧相位恢复和正算子值测量。本文采用最小二乘方法对信号进行重构,建立了信号的非渐近统计性质。我们的分析表明,在无噪声情况下,估计器完美地恢复了真实信号,而在有噪声情况下,估计器与真实信号之间的误差以O(plog (1+2n)/n)为界,其中n是测量次数,p是信号的维数。然后,我们开发了一种两阶段算法,梯度正则化牛顿法(GRNM),以解决最小二乘问题。证明了在一定温和条件下,第一阶段终止于有限多步内,第二阶段生成的序列以超线性速度收敛到唯一的局部极小值。除了这些确定性结果之外,GRNM能够在无噪声情况下准确地重建真实信号,并在有噪声情况下以高概率达到规定的错误率。数值实验表明,该算法具有较高的恢复能力和精度,计算速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信