MOF-derived tri-metallic nanoparticle-embedded cellulose aerogels for tetracycline degradation

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Javaria Khayaban E Erum, Tao Zhao, Yucong Yu, Junkuo Gao
{"title":"MOF-derived tri-metallic nanoparticle-embedded cellulose aerogels for tetracycline degradation","authors":"Javaria Khayaban E Erum,&nbsp;Tao Zhao,&nbsp;Yucong Yu,&nbsp;Junkuo Gao","doi":"10.1016/j.susmat.2025.e01441","DOIUrl":null,"url":null,"abstract":"<div><div>The persistent presence of tetracycline in water poses environmental risks, demanding sustainable remediation. Here, we synthesize MOF-derived tri-metallic nanoparticle–cellulose aerogels for enhanced degradation. By pyrolyzing a trimetallic MOF precursor (Fe/Co/Mn), highly dispersed tri-metallic nitrogen-doped carbon nanoparticles (NCNPs) with synergistic catalytic activity were generated and uniformly embedded within a porous, biodegradable cellulose aerogel matrix. The resulting hybrid aerogel combines the high surface area, porosity, and exceptional adsorption capacity of cellulose with the catalytic prowess of tri-metallic NCNPs, facilitating efficient tetracycline (TC) degradation via peroxymonosulfate (PMS) activation. Structural and morphological characterization (SEM, TEM, XRD, and XPS) confirmed the successful integration of NCNPs and the aerogel's 3D interconnected porous network. The composite demonstrated outstanding TC removal efficiency (99.3 % within 15 min under optimal conditions), owing to enhanced electron transfer and reactive oxygen species (ROS) generation. Mechanistic studies revealed singlet oxygen (<sup>1</sup>O₂) as the dominant species, followed by superoxide radicals (O₂<sup>•−</sup>), hydroxyl radicals (<sup>•</sup>OH), and sulfate radicals (SO₄<sup>•−</sup>). The proposed ROS generation and reaction pathway follows the sequence: <sup>1</sup>O₂ &gt; O₂<sup>•−</sup> &gt; <sup>•</sup>OH &gt; SO₄<sup>•−</sup> highlighting the catalyst's ability to evolve multiple ROS with increasing oxidative selectivity. The aerogel exhibited excellent reusability (92.8 % efficiency after 5 cycles) and minimal metal leaching, underscoring its stability and environmental compatibility. This work showcases MOF-derived tri-metallic catalysts on biopolymer supports as scalable, eco-friendly solutions for antibiotic wastewater treatment.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01441"},"PeriodicalIF":8.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221499372500209X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The persistent presence of tetracycline in water poses environmental risks, demanding sustainable remediation. Here, we synthesize MOF-derived tri-metallic nanoparticle–cellulose aerogels for enhanced degradation. By pyrolyzing a trimetallic MOF precursor (Fe/Co/Mn), highly dispersed tri-metallic nitrogen-doped carbon nanoparticles (NCNPs) with synergistic catalytic activity were generated and uniformly embedded within a porous, biodegradable cellulose aerogel matrix. The resulting hybrid aerogel combines the high surface area, porosity, and exceptional adsorption capacity of cellulose with the catalytic prowess of tri-metallic NCNPs, facilitating efficient tetracycline (TC) degradation via peroxymonosulfate (PMS) activation. Structural and morphological characterization (SEM, TEM, XRD, and XPS) confirmed the successful integration of NCNPs and the aerogel's 3D interconnected porous network. The composite demonstrated outstanding TC removal efficiency (99.3 % within 15 min under optimal conditions), owing to enhanced electron transfer and reactive oxygen species (ROS) generation. Mechanistic studies revealed singlet oxygen (1O₂) as the dominant species, followed by superoxide radicals (O₂•−), hydroxyl radicals (OH), and sulfate radicals (SO₄•−). The proposed ROS generation and reaction pathway follows the sequence: 1O₂ > O₂•− > OH > SO₄•− highlighting the catalyst's ability to evolve multiple ROS with increasing oxidative selectivity. The aerogel exhibited excellent reusability (92.8 % efficiency after 5 cycles) and minimal metal leaching, underscoring its stability and environmental compatibility. This work showcases MOF-derived tri-metallic catalysts on biopolymer supports as scalable, eco-friendly solutions for antibiotic wastewater treatment.

Abstract Image

用于四环素降解的mof衍生的三金属纳米颗粒包埋纤维素气凝胶
四环素在水中的持续存在带来了环境风险,需要可持续的补救措施。在这里,我们合成了mof衍生的三金属纳米颗粒-纤维素气凝胶,以增强降解。通过热解三金属MOF前驱体(Fe/Co/Mn),生成具有协同催化活性的高度分散的三金属氮掺杂碳纳米颗粒(NCNPs),并均匀嵌入多孔的可生物降解的纤维素气凝胶基质中。由此产生的混合气凝胶结合了纤维素的高表面积、孔隙率和优异的吸附能力以及三金属NCNPs的催化能力,通过过氧单硫酸盐(PMS)活化促进了高效的四环素(TC)降解。结构和形态表征(SEM、TEM、XRD和XPS)证实了NCNPs与气凝胶三维互联多孔网络的成功整合。由于增强了电子转移和活性氧(ROS)的生成,该复合材料具有出色的TC去除效率(在最佳条件下15 min内达到99.3%)。机理研究表明,单线态氧(O₂)是主要自由基,其次是超氧自由基(O₂•−)、羟基自由基(•OH)和硫酸盐自由基(SO₄•−)。提出的ROS生成和反应途径顺序为:10₂>;O₂•−祝辞•哦比;SO₄•−突出了催化剂进化多种ROS的能力,增加了氧化选择性。气凝胶具有良好的可重复使用性(5次循环后效率为92.8%)和最小的金属浸出,强调了其稳定性和环境相容性。这项工作展示了mof衍生的三金属催化剂在生物聚合物载体上作为可扩展的、环保的抗生素废水处理解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信