{"title":"r-dynamic colorings and the spectral radius in graphs","authors":"Jiangdong Ai , Suil O. , Liwen Zhang","doi":"10.1016/j.dam.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the chromatic number and spectral radius of <span><math><mi>G</mi></math></span>, respectively. In 1967, Wilf proved that for a graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An <span><math><mi>r</mi></math></span>-dynamic <span><math><mi>k</mi></math></span>-coloring of a graph <span><math><mi>G</mi></math></span> is a proper <span><math><mi>k</mi></math></span>-coloring of <span><math><mi>G</mi></math></span> such that every vertex <span><math><mi>v</mi></math></span> in <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> has neighbors in at least <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math></span> different color classes. The <span><math><mi>r</mi></math></span>-dynamic chromatic number of a graph <span><math><mi>G</mi></math></span>, written <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the least <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has such a <span><math><mi>k</mi></math></span>-coloring. Note that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>r</mi><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (*) (Jahanbekama et al., 2016). By the inequality (*), we observe that for a positive integer <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and a connected graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mi>r</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div><div>In this paper, for a positive integer <span><math><mrow><mi>k</mi><mo>></mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we provide graphs <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span> with <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> to show that the bound is almost sharp. When <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>; equality holds only when <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo></mrow></math></span> or <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>10</mn></mrow></math></span>; equality holds when <span><math><mi>G</mi></math></span> is the Petersen graph. When <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>5</mn></mrow></math></span>, we prove that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, which implies <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>+</mo><mn>2</mn><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The graph <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>3</mn></mrow></msub></math></span> guarantees that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> is sharp.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 249-255"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be the chromatic number and spectral radius of , respectively. In 1967, Wilf proved that for a graph , we have . An -dynamic -coloring of a graph is a proper -coloring of such that every vertex in has neighbors in at least different color classes. The -dynamic chromatic number of a graph , written , is the least such that has such a -coloring. Note that and (*) (Jahanbekama et al., 2016). By the inequality (*), we observe that for a positive integer and a connected graph , we have
In this paper, for a positive integer , we provide graphs with to show that the bound is almost sharp. When , we prove that ; equality holds only when or . For and , we prove that ; equality holds when is the Petersen graph. When and , we prove that , which implies . The graph guarantees that is sharp.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.