Mingtao Zhang , Tao Jiang , Yu Su , Zhonggang Sun , Yaxin Xu , Wenya Li
{"title":"Study on the interfacial bonding behavior of dissimilar aluminum alloys via additive friction stir deposition","authors":"Mingtao Zhang , Tao Jiang , Yu Su , Zhonggang Sun , Yaxin Xu , Wenya Li","doi":"10.1016/j.pnsc.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional fusion-based additive manufacturing methods for dissimilar aluminum alloys often face low efficiency and weak interfacial bonding. The rod-feeding-based additive friction stir deposition (R-AFSD) process improves this by achieving metallurgical bonding through recrystallization without melting the material. This work fills a study gap in multilayer deposition of dissimilar aluminum alloys, focusing on bonding mechanisms and optimizing interfacial properties critical for high-performance dissimilar aluminum alloys structures in aerospace applications. This work fabricated a three-layer deposition of 6061-T6, 2024-T6, and 7075-T6 alloys, characterizing material flow and interfacial microstructure using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). Zn enrichment at the 7075/2024 interface resulted in an average grain size of 0.8 μm, enhancing interfacial strength. Shear tests showed that the 7075/2024 interface had the highest shear strength of 232 MPa, while the 6061/2024 interface exhibited a maximum shear strength of 155 MPa with greater plasticity. The multilayer structure of dissimilar aluminum alloys demonstrates superior performance by integrating the strengths of each alloy. The strategic placement of 6061 in the bottom layer provides corrosion resistance, while 2024 enhances fatigue resistance, and 7075 withstands high loads. This study offers novel insights into R-AFSD for dissimilar aluminum alloy deposition, with significant implications for aerospace applications.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"35 2","pages":"Pages 433-439"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007125000139","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional fusion-based additive manufacturing methods for dissimilar aluminum alloys often face low efficiency and weak interfacial bonding. The rod-feeding-based additive friction stir deposition (R-AFSD) process improves this by achieving metallurgical bonding through recrystallization without melting the material. This work fills a study gap in multilayer deposition of dissimilar aluminum alloys, focusing on bonding mechanisms and optimizing interfacial properties critical for high-performance dissimilar aluminum alloys structures in aerospace applications. This work fabricated a three-layer deposition of 6061-T6, 2024-T6, and 7075-T6 alloys, characterizing material flow and interfacial microstructure using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). Zn enrichment at the 7075/2024 interface resulted in an average grain size of 0.8 μm, enhancing interfacial strength. Shear tests showed that the 7075/2024 interface had the highest shear strength of 232 MPa, while the 6061/2024 interface exhibited a maximum shear strength of 155 MPa with greater plasticity. The multilayer structure of dissimilar aluminum alloys demonstrates superior performance by integrating the strengths of each alloy. The strategic placement of 6061 in the bottom layer provides corrosion resistance, while 2024 enhances fatigue resistance, and 7075 withstands high loads. This study offers novel insights into R-AFSD for dissimilar aluminum alloy deposition, with significant implications for aerospace applications.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.