Juan Pablo Henríquez , Francisca Bermedo-García , Diego Zelada , Jessica Mella
{"title":"Integrating postsynaptic morphology and dynamics to evaluate neuromuscular synapse status: Insights from α-bungarotoxin","authors":"Juan Pablo Henríquez , Francisca Bermedo-García , Diego Zelada , Jessica Mella","doi":"10.1016/j.toxicon.2025.108404","DOIUrl":null,"url":null,"abstract":"<div><div>The neuromuscular junction (NMJ) is a crucial peripheral synapse that controls muscle contraction. It consists of a presynaptic motor terminal, a postsynaptic muscle domain, and associated cells, such as terminal Schwann cells and kranocytes. Its larger size compared to central synapses has allowed detailed analyses of NMJ morphology that have been widely used as a reliable parameter of synaptic formation, maturation, function, and decline. Due to its high affinity for postsynaptic acetylcholine receptors (AChRs), the snake venom-derived α-bungarotoxin (BTX) has been pivotal in advancing our understanding of NMJ organization, enabling a detailed mapping of postsynaptic morphologies associated to distinct functional outcomes. Although certain morphological features are often associated with NMJ worsening, some of these cellular changes also occur in biological contexts where synaptic function remains intact. In this review, we draw on previous studies and our recent findings using BTX-based pulse-chase assays to suggest that combining morphological analyses with assessments of postsynaptic stability offers a more comprehensive understanding of NMJ function and regenerative potential. We propose that integrating diverse BTX-based tools into studies of NMJ morphology and stability will provide particularly valuable insights in contexts such as aging, injury, and neuromuscular diseases, where these combined parameters may serve as robust predictors of functional outcomes.</div></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"262 ","pages":"Article 108404"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010125001783","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The neuromuscular junction (NMJ) is a crucial peripheral synapse that controls muscle contraction. It consists of a presynaptic motor terminal, a postsynaptic muscle domain, and associated cells, such as terminal Schwann cells and kranocytes. Its larger size compared to central synapses has allowed detailed analyses of NMJ morphology that have been widely used as a reliable parameter of synaptic formation, maturation, function, and decline. Due to its high affinity for postsynaptic acetylcholine receptors (AChRs), the snake venom-derived α-bungarotoxin (BTX) has been pivotal in advancing our understanding of NMJ organization, enabling a detailed mapping of postsynaptic morphologies associated to distinct functional outcomes. Although certain morphological features are often associated with NMJ worsening, some of these cellular changes also occur in biological contexts where synaptic function remains intact. In this review, we draw on previous studies and our recent findings using BTX-based pulse-chase assays to suggest that combining morphological analyses with assessments of postsynaptic stability offers a more comprehensive understanding of NMJ function and regenerative potential. We propose that integrating diverse BTX-based tools into studies of NMJ morphology and stability will provide particularly valuable insights in contexts such as aging, injury, and neuromuscular diseases, where these combined parameters may serve as robust predictors of functional outcomes.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.