Yanxia Lin , Ran Shi , Mengzhen Wang , Yali Wang , Yunfan Han , Yongcui Ma , Liyin Li , Xiaohua Xia
{"title":"MCPA-Na exposure in aquatic systems: disruption of pathways and increased susceptibility to infection in fish","authors":"Yanxia Lin , Ran Shi , Mengzhen Wang , Yali Wang , Yunfan Han , Yongcui Ma , Liyin Li , Xiaohua Xia","doi":"10.1016/j.aquatox.2025.107405","DOIUrl":null,"url":null,"abstract":"<div><div>MCPA-Na (2-methyl-4-chlorophenoxyacetic acid) is a selective herbicide widely used in agricultural cultivation. Despite monitoring indicating risks to aquatic life, the specific organ effects and pathogen susceptibility are unclear. Therefore, we constructed a “compound-core target-signaling pathway” network using network toxicology methods, and the results showed that MCPA-Na interacted with multiple organs of loach (including intestine, liver, kidney, heart, gills, skin and blood). STRING and Cytoscape software were used to screen the core targets: PPAR (Peroxisome proliferator-activated receptor), ACE (angiotensin converting enzyme), REN (Renin), and CA9 (carbonic anhydrase). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the core targets of each tissue were significantly enriched in the renin-angiotensin system, NF-κB signaling pathway, adherens junctions and cholinergic synapses. The relationship between the toxicology and molecular markers of MCPA-Na was further explored by using animal experiments, and the susceptibility of <em>Misgurnus anguillicaudatus</em> (loach) to opportunistic pathogens after toxic exposure was simulated by using opportunistic pathogen challenge <em>Aeromonas hydrophila</em> (<em>A. hydrophila</em>). It was found that the compound induced oxidative stress and triggered intestinal inflammation and promoted apoptosis. These processes undermine the intestinal barrier and increase the susceptibility of loach to the <em>A. hydrophila</em>, thereby exacerbating the challenge of aquaculture food safety.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"284 ","pages":"Article 107405"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25001705","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MCPA-Na (2-methyl-4-chlorophenoxyacetic acid) is a selective herbicide widely used in agricultural cultivation. Despite monitoring indicating risks to aquatic life, the specific organ effects and pathogen susceptibility are unclear. Therefore, we constructed a “compound-core target-signaling pathway” network using network toxicology methods, and the results showed that MCPA-Na interacted with multiple organs of loach (including intestine, liver, kidney, heart, gills, skin and blood). STRING and Cytoscape software were used to screen the core targets: PPAR (Peroxisome proliferator-activated receptor), ACE (angiotensin converting enzyme), REN (Renin), and CA9 (carbonic anhydrase). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the core targets of each tissue were significantly enriched in the renin-angiotensin system, NF-κB signaling pathway, adherens junctions and cholinergic synapses. The relationship between the toxicology and molecular markers of MCPA-Na was further explored by using animal experiments, and the susceptibility of Misgurnus anguillicaudatus (loach) to opportunistic pathogens after toxic exposure was simulated by using opportunistic pathogen challenge Aeromonas hydrophila (A. hydrophila). It was found that the compound induced oxidative stress and triggered intestinal inflammation and promoted apoptosis. These processes undermine the intestinal barrier and increase the susceptibility of loach to the A. hydrophila, thereby exacerbating the challenge of aquaculture food safety.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.