The small value set polynomials over finite fields and monodromy groups

IF 0.6 3区 数学 Q3 MATHEMATICS
Xiantao Deng, Bin Xu, Qianxi Zhu
{"title":"The small value set polynomials over finite fields and monodromy groups","authors":"Xiantao Deng,&nbsp;Bin Xu,&nbsp;Qianxi Zhu","doi":"10.1016/j.jnt.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study polynomials over finite fields with small value sets through their monodromy groups. More specifically, we consider polynomials <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> such that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo></math></span> is Galois, which we call absolutely minimal value set polynomials (AMVSPs) over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We examine their relationship with minimal value set polynomials (MVSPs) by directly utilizing tools and results from function field theory. In particular, we prove that if <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> satisfies <span><math><mn>1</mn><mo>&lt;</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>f</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mi>q</mi></mrow></msqrt><mo>+</mo><mn>1</mn></math></span>, then <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is an MVSP if and only if it is an AMVSP. As an application of our results, we provide a simple proof of the classification results of Mills (see <span><span>[16, Theorem 2]</span></span>) and Borges-Conceição (see <span><span>[4, Theorem 2.3]</span></span>) for MVSPs with degree <span><math><mo>≤</mo><msqrt><mrow><mi>q</mi></mrow></msqrt><mo>+</mo><mn>1</mn></math></span> using a completely different approach.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"276 ","pages":"Pages 139-161"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study polynomials over finite fields with small value sets through their monodromy groups. More specifically, we consider polynomials f(T)Fq[T] such that Fq(T)/Fq(f(T)) is Galois, which we call absolutely minimal value set polynomials (AMVSPs) over Fq. We examine their relationship with minimal value set polynomials (MVSPs) by directly utilizing tools and results from function field theory. In particular, we prove that if f(T)Fq[T] satisfies 1<deg(f)q+1, then f(T) is an MVSP if and only if it is an AMVSP. As an application of our results, we provide a simple proof of the classification results of Mills (see [16, Theorem 2]) and Borges-Conceição (see [4, Theorem 2.3]) for MVSPs with degree q+1 using a completely different approach.
有限域和单群上的小值集多项式
本文通过多项式的单群,研究了小值集有限域上的多项式。更具体地说,我们考虑多项式f(T)∈Fq[T],使得Fq(T)/Fq(f(T))是伽罗瓦,我们称之为Fq上的绝对极小值集多项式(AMVSPs)。我们直接利用函数场理论的工具和结果来研究它们与最小值集多项式(MVSPs)的关系。特别地,我们证明了如果f(T)∈Fq[T]满足1<;deg (f)≤q+1,则f(T)是一个MVSP当且仅当它是一个AMVSP。作为我们结果的一个应用,我们使用一种完全不同的方法提供了Mills(参见[16,定理2])和borges - concep o(参见[4,定理2.3])对度≤q+1的mvsp的分类结果的简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信