Irreversibility analysis of magnetized flow of engine oil hybrid nanofluid (Ti6Al4V-ZnO/EO) over a stretching surface

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Syed M. Hussain , Aftab Ahmed Faridi , Hijaz Ahmad , Kashif Ali , Muhammad Rashid Iqbal , Wasim Jamshed , Kamel Guedri , Abdulrazak H. Almaliki
{"title":"Irreversibility analysis of magnetized flow of engine oil hybrid nanofluid (Ti6Al4V-ZnO/EO) over a stretching surface","authors":"Syed M. Hussain ,&nbsp;Aftab Ahmed Faridi ,&nbsp;Hijaz Ahmad ,&nbsp;Kashif Ali ,&nbsp;Muhammad Rashid Iqbal ,&nbsp;Wasim Jamshed ,&nbsp;Kamel Guedri ,&nbsp;Abdulrazak H. Almaliki","doi":"10.1016/j.aej.2025.05.023","DOIUrl":null,"url":null,"abstract":"<div><div>This article analyzes the irreversibility of hydro-magnetic dynamics of hybridized nanofluid comprising of titanium alloy <em>(Ti</em><sub><em>6</em></sub><em>Al</em><sub><em>4</em></sub><em>V)</em> and zinc-oxide <em>(ZnO)</em> submerged into engine oil (used as a fuel) through a porous stretching sheet with multipart effects of viscous dissipation and non-uniform heat source. An induced magnetic field exists in the flow field due to the conducting nature of the hybrid nanofluid. The equations of the flow model are transformed by the similarity transformations and then simulated through a numerical scheme constructed with a formulation of central differences that adopts successive over-relaxation methodology. In this thermodynamic system, entropy and Bejan number profiles corresponding to the prominent parameters are simultaneously analysed for both the nanofluid case and hybrid nanofluid case in the Cartesian coordinates. A comparison table is constructed to validate the numerical results with existing literature. The impacts of various parameters on Nusselt number and skin friction coefficient are graphed with reference to the magnetic field parameter. A significant reduction in irreversibility and a remarkable improvement in thermal characteristics of engine oil are observed due to induced magnetism effects. The engine oil hybrid nanofluid (<em>Ti</em><sub><em>6</em></sub><em>Al</em><sub><em>4</em></sub><em>V-ZnO/EO</em>) exhibits a 13.89 % higher heat transfer rate over a porous stretching surface compared to the engine oil nanofluid (<em>Ti</em><sub><em>6</em></sub><em>Al</em><sub><em>4</em></sub><em>V/EO</em>).</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 214-227"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825006428","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article analyzes the irreversibility of hydro-magnetic dynamics of hybridized nanofluid comprising of titanium alloy (Ti6Al4V) and zinc-oxide (ZnO) submerged into engine oil (used as a fuel) through a porous stretching sheet with multipart effects of viscous dissipation and non-uniform heat source. An induced magnetic field exists in the flow field due to the conducting nature of the hybrid nanofluid. The equations of the flow model are transformed by the similarity transformations and then simulated through a numerical scheme constructed with a formulation of central differences that adopts successive over-relaxation methodology. In this thermodynamic system, entropy and Bejan number profiles corresponding to the prominent parameters are simultaneously analysed for both the nanofluid case and hybrid nanofluid case in the Cartesian coordinates. A comparison table is constructed to validate the numerical results with existing literature. The impacts of various parameters on Nusselt number and skin friction coefficient are graphed with reference to the magnetic field parameter. A significant reduction in irreversibility and a remarkable improvement in thermal characteristics of engine oil are observed due to induced magnetism effects. The engine oil hybrid nanofluid (Ti6Al4V-ZnO/EO) exhibits a 13.89 % higher heat transfer rate over a porous stretching surface compared to the engine oil nanofluid (Ti6Al4V/EO).
发动机润滑油混合纳米流体(Ti6Al4V-ZnO/EO)在拉伸表面磁化流动的不可逆性分析
本文分析了钛合金(Ti6Al4V)和氧化锌(ZnO)混合纳米流体在多组分粘滞耗散和非均匀热源作用下,通过多孔拉伸片浸入作为燃料的发动机油中的水磁动力学的不可逆性。由于混合纳米流体的导电性,流场中存在感应磁场。通过相似变换对流动模型的方程进行变换,然后采用逐次过松弛法的中心差分公式构造数值格式进行模拟。在此热力学系统中,在笛卡尔坐标系下,同时分析了纳米流体和混合纳米流体情况下的熵和贝让数曲线对应的突出参数。建立了比较表,将数值结果与已有文献进行了比较。以磁场参数为参考,绘制了各参数对努塞尔数和表面摩擦系数的影响图。由于磁感应效应,发动机油的不可逆性显著降低,热特性显著改善。混合纳米流体(Ti6Al4V- zno /EO)在多孔拉伸表面的传热率比混合纳米流体(Ti6Al4V/EO)高13.89 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信