Interaction dynamics between cavitation bubbles and compressible air bubbles in an infinite domain

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yang Liu , Xiaolong He , Caisheng Huang, Jianmin Zhang
{"title":"Interaction dynamics between cavitation bubbles and compressible air bubbles in an infinite domain","authors":"Yang Liu ,&nbsp;Xiaolong He ,&nbsp;Caisheng Huang,&nbsp;Jianmin Zhang","doi":"10.1016/j.ijheatmasstransfer.2025.127214","DOIUrl":null,"url":null,"abstract":"<div><div>Air entrainment is of great significance for mitigating cavitation erosion damage, but current numerical studies on cavitation predominantly neglect the influence of air bubbles on cavitation bubble dynamics. This study employs a two-component compressible phase-change model to elucidate three distinct interaction modes between cavitation and air bubbles: upward jetting, splitting, and downward jetting. Notably, the downward jetting mode demonstrates markedly higher velocity compared to other patterns. Crucially, when inter-bubble spacing reduces below a critical dimensionless threshold, the high-pressure pulse from air bubble collapse induces micro-jets exceeding 200 m/s. Through dimensional analysis, we establish a dimensionless parameter correlating air bubble size (η) and separation distance (γ). Theoretical derivation shows the cavitation bubble collapse time exhibits an exponential decay dependence on the parameter (γ/η), while maximum expansion velocity scales with the sixth power of its reciprocal. The theoretical breakthrough lies in demonstrating that regulated air bubble sizing can strategically suppress cavitation erosion: Air bubble collapse not only attenuates cavitation collapse intensity but also redirects destructive energy through micro-jet orientation control. These findings establish fundamental guidelines for cavitation protection in hydraulic structures, providing crucial theoretical references for erosion suppression.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"249 ","pages":"Article 127214"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025005538","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Air entrainment is of great significance for mitigating cavitation erosion damage, but current numerical studies on cavitation predominantly neglect the influence of air bubbles on cavitation bubble dynamics. This study employs a two-component compressible phase-change model to elucidate three distinct interaction modes between cavitation and air bubbles: upward jetting, splitting, and downward jetting. Notably, the downward jetting mode demonstrates markedly higher velocity compared to other patterns. Crucially, when inter-bubble spacing reduces below a critical dimensionless threshold, the high-pressure pulse from air bubble collapse induces micro-jets exceeding 200 m/s. Through dimensional analysis, we establish a dimensionless parameter correlating air bubble size (η) and separation distance (γ). Theoretical derivation shows the cavitation bubble collapse time exhibits an exponential decay dependence on the parameter (γ/η), while maximum expansion velocity scales with the sixth power of its reciprocal. The theoretical breakthrough lies in demonstrating that regulated air bubble sizing can strategically suppress cavitation erosion: Air bubble collapse not only attenuates cavitation collapse intensity but also redirects destructive energy through micro-jet orientation control. These findings establish fundamental guidelines for cavitation protection in hydraulic structures, providing crucial theoretical references for erosion suppression.
空化气泡与可压缩气泡在无限域中的相互作用动力学
空气携流对减轻空化侵蚀损伤具有重要意义,但目前关于空化的数值研究大多忽略了气泡对空化泡动力学的影响。本研究采用双组分可压缩相变模型来阐明空化与气泡的三种不同的相互作用模式:向上喷射、分裂和向下喷射。值得注意的是,与其他模式相比,向下喷射模式显示出明显更高的速度。重要的是,当气泡间距减小到临界无因次阈值以下时,气泡破裂产生的高压脉冲诱导出超过200 m/s的微射流。通过量纲分析,建立了气泡尺寸(η)与分离距离(γ)之间的无量纲参数。理论推导表明,空化泡的坍缩时间与参数(γ/η)呈指数衰减关系,而最大膨胀速度随其倒数的六次幂而变化。理论上的突破在于证明了调节气泡尺寸可以有策略地抑制空化侵蚀:气泡崩溃不仅可以减弱空化崩溃强度,还可以通过微射流定向控制来重定向破坏能量。这些发现为水工建筑物的空化防护提供了基本指导,为抑制冲蚀提供了重要的理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信