{"title":"Unidirectional frequency doubling laser based on lithium niobate on insulator","authors":"Ruyi Xia , Ranran Xie , Xueqing Cui , Yuechen Jia , Feng Chen","doi":"10.1016/j.optcom.2025.131984","DOIUrl":null,"url":null,"abstract":"<div><div>The unidirectional transmission of on-chip light sources is crucial for constructing photonic integrated circuits (PICs). Establishing exceptional points (EPs) or exceptional surfaces (ES) represents a significant approach to achieving unidirectional transmission. We study an on-chip integrated unidirectional frequency doubling laser based on the second-order optical nonlinearity of lithium niobate and the realization of ES through asymmetrical mode coupling in the microcavity. The device integrates frequency conversion and unidirectional laser transmission into a single module, compatible with the realization of multi-functional PICs. Moreover, the performance of the device exhibits high tolerance to parameter variations. The proposed device exhibiting stable performance and ease of fabrication offers novel insights into the development of PICs.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"589 ","pages":"Article 131984"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825005127","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The unidirectional transmission of on-chip light sources is crucial for constructing photonic integrated circuits (PICs). Establishing exceptional points (EPs) or exceptional surfaces (ES) represents a significant approach to achieving unidirectional transmission. We study an on-chip integrated unidirectional frequency doubling laser based on the second-order optical nonlinearity of lithium niobate and the realization of ES through asymmetrical mode coupling in the microcavity. The device integrates frequency conversion and unidirectional laser transmission into a single module, compatible with the realization of multi-functional PICs. Moreover, the performance of the device exhibits high tolerance to parameter variations. The proposed device exhibiting stable performance and ease of fabrication offers novel insights into the development of PICs.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.