Xuelei Li , Wei Da , Zhihui Xu , Qingwen Li , Huirong Liu , Kai Lv , Aruuhan Bayaguud
{"title":"Excellent stability of layered Na0.67Ni0.33Fe0.33Mn0.33O2 cathode materials with P2/O3 biphasic system in humid ambient air","authors":"Xuelei Li , Wei Da , Zhihui Xu , Qingwen Li , Huirong Liu , Kai Lv , Aruuhan Bayaguud","doi":"10.1016/j.ssi.2025.116895","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium ion batteries (SIBs) have shown broad application prospects in the field of energy storage due to their low cost, high safety, wide operating temperature range, fast charging, and environmental friendliness. As one of the key components of SIBs, layered oxide cathodes have significant advantages such as high specific capacity, feasible energy density, and high operating voltage, but they also face challenges of poor interface stability and insufficient air stability. In this work, a P2/O3 biphasic system Na<sub>0.67</sub>Ni<sub>0.33</sub>Fe<sub>0.33</sub>Mn<sub>0.33</sub>O<sub>2</sub> (Na0.67NFM) is synthesized by a sol-gel and subsequent solid phase calcination method. Furthermore, the structural characteristics of Na0.67NFM calcined at 900 °C (Na0.67NFM-900) are investigated, revealing that it maintains a high stability even after exposure in humid ambient air for 5 days. Although a small amount of Na<sub>2</sub>CO<sub>3</sub> and NaHCO<sub>3</sub> is produced on the surface of Na0.67NFM-900, the main P2/O3 structure still maintains overall integrity into the internal bulk phase. Therefore, the electrochemical performance of Na0.67NFM cathode is not significantly affected after short-term air exposure. After 200 cycles at 1C, the capacity retention of Na0.67NFM-900 cathode still remains 72.3 %, which is almost comparable to that of the unexposed one (75.7 %). This work indicates that Na0.67NFM is a promising candidate cathode material with exceptional air stability for SIBs.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"426 ","pages":"Article 116895"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825001146","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium ion batteries (SIBs) have shown broad application prospects in the field of energy storage due to their low cost, high safety, wide operating temperature range, fast charging, and environmental friendliness. As one of the key components of SIBs, layered oxide cathodes have significant advantages such as high specific capacity, feasible energy density, and high operating voltage, but they also face challenges of poor interface stability and insufficient air stability. In this work, a P2/O3 biphasic system Na0.67Ni0.33Fe0.33Mn0.33O2 (Na0.67NFM) is synthesized by a sol-gel and subsequent solid phase calcination method. Furthermore, the structural characteristics of Na0.67NFM calcined at 900 °C (Na0.67NFM-900) are investigated, revealing that it maintains a high stability even after exposure in humid ambient air for 5 days. Although a small amount of Na2CO3 and NaHCO3 is produced on the surface of Na0.67NFM-900, the main P2/O3 structure still maintains overall integrity into the internal bulk phase. Therefore, the electrochemical performance of Na0.67NFM cathode is not significantly affected after short-term air exposure. After 200 cycles at 1C, the capacity retention of Na0.67NFM-900 cathode still remains 72.3 %, which is almost comparable to that of the unexposed one (75.7 %). This work indicates that Na0.67NFM is a promising candidate cathode material with exceptional air stability for SIBs.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.