{"title":"Redistribution of the post-reaction internal energies in DSMC using quantum-kinetic model","authors":"Chi-Ho Chou, Kuo-Long Pan","doi":"10.1016/j.cpc.2025.109641","DOIUrl":null,"url":null,"abstract":"<div><div>The Direct Simulation Monte Carlo (DSMC) method has been largely adopted to analyze problems regarding hypersonic, non-equilibrium, and microscopic flows. In this study, we investigate the thermal-chemical effects on combustion at the microscopic scale using this particle collision-based method. It is realized that the existing Larsen-Borgnakke (L-B) model dealing with transfers of various internal energies cannot provide valid solutions for the reactions, and consequently the system fails to reach thermal equilibrium. To overcome this problem, we propose a modified quantum-kinetic (Q-K) model and corresponding redistribution algorithm to satisfy the required detailed balance, based on the solver dsmcFoam+ in the open-source software OpenFOAM. This allows a more straightforward way to handle post-energy redistribution in chemical reactions in comparison to those of the other methods, thus reducing the computational cost and manipulation. To verify the accuracy, spontaneous combustion of premixed <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is simulated, which includes polyatomic reactions and non-equilibrium processes, followed by three-dimensional simulation for the Mars Pathfinder probe. Compared with the L-B redistribution method, substantial improvement and excellent solutions to the issues are demonstrated by using the new approach, paving the way for accurate and efficient studies of complex problems involving polyatomic chemical reactions and non-equilibrium processes.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"314 ","pages":"Article 109641"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001432","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The Direct Simulation Monte Carlo (DSMC) method has been largely adopted to analyze problems regarding hypersonic, non-equilibrium, and microscopic flows. In this study, we investigate the thermal-chemical effects on combustion at the microscopic scale using this particle collision-based method. It is realized that the existing Larsen-Borgnakke (L-B) model dealing with transfers of various internal energies cannot provide valid solutions for the reactions, and consequently the system fails to reach thermal equilibrium. To overcome this problem, we propose a modified quantum-kinetic (Q-K) model and corresponding redistribution algorithm to satisfy the required detailed balance, based on the solver dsmcFoam+ in the open-source software OpenFOAM. This allows a more straightforward way to handle post-energy redistribution in chemical reactions in comparison to those of the other methods, thus reducing the computational cost and manipulation. To verify the accuracy, spontaneous combustion of premixed is simulated, which includes polyatomic reactions and non-equilibrium processes, followed by three-dimensional simulation for the Mars Pathfinder probe. Compared with the L-B redistribution method, substantial improvement and excellent solutions to the issues are demonstrated by using the new approach, paving the way for accurate and efficient studies of complex problems involving polyatomic chemical reactions and non-equilibrium processes.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.