Redistribution of the post-reaction internal energies in DSMC using quantum-kinetic model

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chi-Ho Chou, Kuo-Long Pan
{"title":"Redistribution of the post-reaction internal energies in DSMC using quantum-kinetic model","authors":"Chi-Ho Chou,&nbsp;Kuo-Long Pan","doi":"10.1016/j.cpc.2025.109641","DOIUrl":null,"url":null,"abstract":"<div><div>The Direct Simulation Monte Carlo (DSMC) method has been largely adopted to analyze problems regarding hypersonic, non-equilibrium, and microscopic flows. In this study, we investigate the thermal-chemical effects on combustion at the microscopic scale using this particle collision-based method. It is realized that the existing Larsen-Borgnakke (L-B) model dealing with transfers of various internal energies cannot provide valid solutions for the reactions, and consequently the system fails to reach thermal equilibrium. To overcome this problem, we propose a modified quantum-kinetic (Q-K) model and corresponding redistribution algorithm to satisfy the required detailed balance, based on the solver dsmcFoam+ in the open-source software OpenFOAM. This allows a more straightforward way to handle post-energy redistribution in chemical reactions in comparison to those of the other methods, thus reducing the computational cost and manipulation. To verify the accuracy, spontaneous combustion of premixed <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is simulated, which includes polyatomic reactions and non-equilibrium processes, followed by three-dimensional simulation for the Mars Pathfinder probe. Compared with the L-B redistribution method, substantial improvement and excellent solutions to the issues are demonstrated by using the new approach, paving the way for accurate and efficient studies of complex problems involving polyatomic chemical reactions and non-equilibrium processes.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"314 ","pages":"Article 109641"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001432","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Direct Simulation Monte Carlo (DSMC) method has been largely adopted to analyze problems regarding hypersonic, non-equilibrium, and microscopic flows. In this study, we investigate the thermal-chemical effects on combustion at the microscopic scale using this particle collision-based method. It is realized that the existing Larsen-Borgnakke (L-B) model dealing with transfers of various internal energies cannot provide valid solutions for the reactions, and consequently the system fails to reach thermal equilibrium. To overcome this problem, we propose a modified quantum-kinetic (Q-K) model and corresponding redistribution algorithm to satisfy the required detailed balance, based on the solver dsmcFoam+ in the open-source software OpenFOAM. This allows a more straightforward way to handle post-energy redistribution in chemical reactions in comparison to those of the other methods, thus reducing the computational cost and manipulation. To verify the accuracy, spontaneous combustion of premixed H2/O2 is simulated, which includes polyatomic reactions and non-equilibrium processes, followed by three-dimensional simulation for the Mars Pathfinder probe. Compared with the L-B redistribution method, substantial improvement and excellent solutions to the issues are demonstrated by using the new approach, paving the way for accurate and efficient studies of complex problems involving polyatomic chemical reactions and non-equilibrium processes.
用量子动力学模型重新分配DSMC反应后的内能
直接模拟蒙特卡罗(DSMC)方法被广泛用于分析高超声速、非平衡和微观流动问题。在本研究中,我们使用基于粒子碰撞的方法在微观尺度上研究了热化学对燃烧的影响。认识到现有的处理各种内能传递的Larsen-Borgnakke (L-B)模型不能为反应提供有效的解,因此系统不能达到热平衡。为了克服这一问题,我们基于开源软件OpenFOAM中的求解器dsmcFoam+,提出了一种改进的量子动力学(Q-K)模型和相应的再分配算法,以满足所需的详细平衡。与其他方法相比,这可以更直接地处理化学反应中的后能量再分配,从而减少计算成本和操作。为了验证该方法的准确性,本文模拟了预混合H2/O2的自燃过程,包括多原子反应和非平衡过程,并对火星探路者探测器进行了三维模拟。与L-B重分配方法相比,该方法具有显著的改进和较好的解决方案,为精确、高效地研究涉及多原子化学反应和非平衡过程的复杂问题铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信