Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel 1,3,4-Thiadiazole Derivatives Targeting Both Aldose Reductase and α-Glucosidase for Diabetes Mellitus

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Betül Kaya, Ulviye Acar Çevik*, Adem Necip, Hatice Esra Duran, Bilge Çiftçi, Mesut Işık, Pervin Soyer, Hayrani Eren Bostancı, Zafer Asım Kaplancıklı and Şükrü Beydemir, 
{"title":"Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel 1,3,4-Thiadiazole Derivatives Targeting Both Aldose Reductase and α-Glucosidase for Diabetes Mellitus","authors":"Betül Kaya,&nbsp;Ulviye Acar Çevik*,&nbsp;Adem Necip,&nbsp;Hatice Esra Duran,&nbsp;Bilge Çiftçi,&nbsp;Mesut Işık,&nbsp;Pervin Soyer,&nbsp;Hayrani Eren Bostancı,&nbsp;Zafer Asım Kaplancıklı and Şükrü Beydemir,&nbsp;","doi":"10.1021/acsomega.5c0056610.1021/acsomega.5c00566","DOIUrl":null,"url":null,"abstract":"<p >We have developed new 1,3,4-thiadiazole derivatives and examined their ability to inhibit aldose reductase and α-glucosidase. All of the members of the series showed a higher potential of aldose reductase inhibition (<i>K</i><sub>I</sub>: 15.39 ± 1.61–176.50 ± 10.69 nM and IC<sub>50</sub>: 20.16 ± 1.07–175.40 ± 6.97 nM) compared to the reference inhibitor epalrestat (<i>K</i><sub>I</sub>: 837.70 ± 53.87 nM, IC<sub>50</sub>: 265.00 ± 2.26 nM). Furthermore, compounds <b>6a</b>, <b>6g</b>, <b>6h</b>, <b>6j</b>, <b>6o</b>, <b>6p</b>, and <b>6q</b> showed significantly higher inhibitory activity (<i>K</i><sub>I</sub>: 4.48 ± 0.25 μM–15.86 ± 0.92 μM and IC<sub>50</sub>: 4.68 ± 0.23 μM–34.65 ± 1.78 μM) toward α-glucosidase compared to the reference acarbose (<i>K</i><sub>I</sub>: 21.52 ± 2.72 μM, IC<sub>50</sub>: 132.51 ± 9.86 μM). Molecular docking studies confirmed that the most potent inhibitor of α-GLY, compound <b>6h</b> (<i>K</i><sub><i>I</i></sub>: 4.48 ± 0.25 μM), interacts with the target protein 5NN8 through hydrogen bonds as in acarbose. On the other hand, compounds <b>6o</b> (<i>K</i><sub>I</sub>: 15.39 ± 1.61 nM) and <b>6p</b> (<i>K</i><sub>I</sub>: 23.86 ± 2.41 nM), the most potent inhibitors for AR, establish hydrogen bonds with the target protein 4JIR like epalrestat. <i>In silico</i> ADME/T analysis was performed to predict their drug-like properties. A cytotoxicity study was carried out with the L929 fibroblast cell line <i>in vitro</i>, revealing that all of the synthesized compounds were noncytotoxic. Furthermore, AMES test has been added to show the low mutagenic potential of the compounds <b>6h</b> and <b>6o</b>.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 18","pages":"18812–18828 18812–18828"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c00566","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c00566","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed new 1,3,4-thiadiazole derivatives and examined their ability to inhibit aldose reductase and α-glucosidase. All of the members of the series showed a higher potential of aldose reductase inhibition (KI: 15.39 ± 1.61–176.50 ± 10.69 nM and IC50: 20.16 ± 1.07–175.40 ± 6.97 nM) compared to the reference inhibitor epalrestat (KI: 837.70 ± 53.87 nM, IC50: 265.00 ± 2.26 nM). Furthermore, compounds 6a, 6g, 6h, 6j, 6o, 6p, and 6q showed significantly higher inhibitory activity (KI: 4.48 ± 0.25 μM–15.86 ± 0.92 μM and IC50: 4.68 ± 0.23 μM–34.65 ± 1.78 μM) toward α-glucosidase compared to the reference acarbose (KI: 21.52 ± 2.72 μM, IC50: 132.51 ± 9.86 μM). Molecular docking studies confirmed that the most potent inhibitor of α-GLY, compound 6h (KI: 4.48 ± 0.25 μM), interacts with the target protein 5NN8 through hydrogen bonds as in acarbose. On the other hand, compounds 6o (KI: 15.39 ± 1.61 nM) and 6p (KI: 23.86 ± 2.41 nM), the most potent inhibitors for AR, establish hydrogen bonds with the target protein 4JIR like epalrestat. In silico ADME/T analysis was performed to predict their drug-like properties. A cytotoxicity study was carried out with the L929 fibroblast cell line in vitro, revealing that all of the synthesized compounds were noncytotoxic. Furthermore, AMES test has been added to show the low mutagenic potential of the compounds 6h and 6o.

针对糖尿病患者醛糖还原酶和α-葡萄糖苷酶的新型1,3,4-噻二唑衍生物的设计、合成、生物学评价及分子对接研究
我们开发了新的1,3,4-噻二唑衍生物,并检测了它们抑制醛糖还原酶和α-葡萄糖苷酶的能力。与对照抑制剂依帕司他(KI: 837.70±53.87 nM, IC50: 265.00±2.26 nM)相比,该系列所有成员均表现出更高的醛糖还原酶抑制潜力(KI: 15.39±1.61 ~ 176.50±10.69 nM, IC50: 20.16±1.07 ~ 175.40±6.97 nM)。此外,化合物6a、6g、6h、6j、60、6p和6q对α-葡萄糖苷酶的抑制活性(KI: 4.48±0.25 μM - 15.86±0.92 μM, IC50: 4.68±0.23 μM - 34.65±1.78 μM)显著高于对照物阿卡波糖(KI: 21.52±2.72 μM, IC50: 132.51±9.86 μM)。分子对接研究证实,α-GLY最有效的抑制剂化合物6h (KI: 4.48±0.25 μM)通过氢键与靶蛋白5NN8相互作用。另一方面,最有效的AR抑制剂化合物60 (KI: 15.39±1.61 nM)和6p (KI: 23.86±2.41 nM)与靶蛋白4JIR建立了氢键,如依帕司他。在计算机上进行ADME/T分析来预测它们的药物样性质。对体外培养的L929成纤维细胞系进行了细胞毒性研究,结果表明所合成的化合物均无细胞毒性。此外,还增加了AMES试验,表明化合物6h和60具有较低的致突变潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信