Exploring the Interfacial Formation between Aqueous Slabs and a Hydrophobic Membrane

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Orhan Kaya*, 
{"title":"Exploring the Interfacial Formation between Aqueous Slabs and a Hydrophobic Membrane","authors":"Orhan Kaya*,&nbsp;","doi":"10.1021/acsomega.4c1172610.1021/acsomega.4c11726","DOIUrl":null,"url":null,"abstract":"<p >Molecular dynamics simulations were used to study the interfacial formation between pure and saline aqueous slabs and hydrophobic polytetrafluoroethylene (PTFE) surfaces, both porous and nonporous. The simulations revealed that the formation of transient water vapor bridges between the slabs and the hydrophobic surface facilitated initial contact by lowering the energy barrier, ultimately leading to surface adherence. The presence of saline aqueous slabs slowed the contact process and influenced the dynamics of the vapor-phase bridges. Additionally, porous PTFE surfaces accelerated the initial contact of the aqueous slabs and exhibited distinctive ion concentration gradients, particularly at the pore centers, indicating localized salinity. Structural deformations, such as bending and pore contact angles, were quantified, providing new insights into the nano-structural changes during the interactions between the slabs and PTFE surfaces.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 18","pages":"18650–18656 18650–18656"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c11726","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c11726","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular dynamics simulations were used to study the interfacial formation between pure and saline aqueous slabs and hydrophobic polytetrafluoroethylene (PTFE) surfaces, both porous and nonporous. The simulations revealed that the formation of transient water vapor bridges between the slabs and the hydrophobic surface facilitated initial contact by lowering the energy barrier, ultimately leading to surface adherence. The presence of saline aqueous slabs slowed the contact process and influenced the dynamics of the vapor-phase bridges. Additionally, porous PTFE surfaces accelerated the initial contact of the aqueous slabs and exhibited distinctive ion concentration gradients, particularly at the pore centers, indicating localized salinity. Structural deformations, such as bending and pore contact angles, were quantified, providing new insights into the nano-structural changes during the interactions between the slabs and PTFE surfaces.

探索水板和疏水膜之间的界面形成
采用分子动力学模拟方法研究了纯和含盐水板与疏水性聚四氟乙烯(PTFE)表面(多孔和非多孔)之间的界面形成。模拟结果表明,在平板和疏水表面之间形成的瞬态水蒸气桥通过降低能垒促进了初始接触,最终导致表面粘附。盐水板的存在减缓了接触过程,影响了气相桥的动力学。此外,多孔PTFE表面加速了水板的初始接触,并表现出独特的离子浓度梯度,特别是在孔中心,表明局部盐度。结构变形,如弯曲和孔隙接触角,被量化,为板和PTFE表面相互作用过程中的纳米结构变化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信