Efficient Magnetization Switching via Orbital-to-Spin Conversion in Cr/W-Based Heterostructures

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chen-Yu Hu, Ming-Yuan Song, Xinyu Bao and Chi-Feng Pai*, 
{"title":"Efficient Magnetization Switching via Orbital-to-Spin Conversion in Cr/W-Based Heterostructures","authors":"Chen-Yu Hu,&nbsp;Ming-Yuan Song,&nbsp;Xinyu Bao and Chi-Feng Pai*,&nbsp;","doi":"10.1021/acsaelm.5c0011610.1021/acsaelm.5c00116","DOIUrl":null,"url":null,"abstract":"<p >A highly efficient spin–orbit torque (SOT) switching mechanism is crucial for the realization of practical SOT magnetic random-access memory (MRAM). This study proposes a Cr/W-based spin current source (SCS) that harvests the sizable orbital current from resistive Cr and results in an additional SOT through the orbital-to-spin conversion via the adjacent thin W layer. The optimal damping-like SOT efficiency can be up to −0.30 for the Cr/W heterostructure and −0.32 for the Cr/W multilayer, both of which outperform the traditional resistive W with a baseline SOT efficiency of −0.23. Additionally, the resistivity dependence of the apparent spin–orbital Hall conductivity reveals that using highly resistive Cr (&gt;400 μΩ·cm) is the key to generating efficient orbital currents. In the cases of Cr/W heterostructure and Cr/W multilayer structures, the largely improved efficiencies also contribute to an ultralow current magnetization switching with zero-thermal current density of 1.88 and 1.54 MA/cm<sup>2</sup>, expanding the utility of W-based SOT devices in high-efficiency and low-power memory applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 9","pages":"4279–4286 4279–4286"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.5c00116","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00116","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A highly efficient spin–orbit torque (SOT) switching mechanism is crucial for the realization of practical SOT magnetic random-access memory (MRAM). This study proposes a Cr/W-based spin current source (SCS) that harvests the sizable orbital current from resistive Cr and results in an additional SOT through the orbital-to-spin conversion via the adjacent thin W layer. The optimal damping-like SOT efficiency can be up to −0.30 for the Cr/W heterostructure and −0.32 for the Cr/W multilayer, both of which outperform the traditional resistive W with a baseline SOT efficiency of −0.23. Additionally, the resistivity dependence of the apparent spin–orbital Hall conductivity reveals that using highly resistive Cr (>400 μΩ·cm) is the key to generating efficient orbital currents. In the cases of Cr/W heterostructure and Cr/W multilayer structures, the largely improved efficiencies also contribute to an ultralow current magnetization switching with zero-thermal current density of 1.88 and 1.54 MA/cm2, expanding the utility of W-based SOT devices in high-efficiency and low-power memory applications.

Cr/ w基异质结构中轨道-自旋转换的有效磁化开关
高效的自旋轨道转矩(SOT)开关机构是实现实用的SOT磁随机存储器的关键。本研究提出了一种基于Cr/W的自旋电流源(SCS),它可以从电阻Cr中获得相当大的轨道电流,并通过相邻的薄W层通过轨道到自旋转换产生额外的SOT。Cr/W异质结构的最佳类阻尼SOT效率可达- 0.30,Cr/W多层结构的最佳SOT效率可达- 0.32,两者都优于传统的电阻W,其基准SOT效率为- 0.23。此外,自旋轨道霍尔电导率对电阻率的依赖表明,使用高阻Cr (>400 μΩ·cm)是产生有效轨道电流的关键。在Cr/W异质结构和Cr/W多层结构的情况下,效率的大幅提高也有助于超低电流磁化开关,零热电流密度分别为1.88和1.54 MA/cm2,扩大了基于W的SOT器件在高效率和低功耗存储器应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信