Efficient photosynthesis of H2O2 over β-ZrNBr nitrohalide nanosheets

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Yunfeng Bao, Jingzhen Zhang, Shiwen Du, Sanlue Hu, Yejun Xiao, Zhaochi Feng, Fuxiang Zhang
{"title":"Efficient photosynthesis of H2O2 over β-ZrNBr nitrohalide nanosheets","authors":"Yunfeng Bao, Jingzhen Zhang, Shiwen Du, Sanlue Hu, Yejun Xiao, Zhaochi Feng, Fuxiang Zhang","doi":"10.1016/j.checat.2025.101386","DOIUrl":null,"url":null,"abstract":"Inorganic mixed-anion semiconductor photocatalysts are promising for water splitting due to their broad visible light absorption and structural stability. However, efficient photocatalytic production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) remains challenging. This study reports a one-step photocatalytic method for H<sub>2</sub>O<sub>2</sub> production using the synthesized β-ZrNBr inorganic nanosheet photocatalyst, achieving an apparent quantum efficiency of 11.7% at 420 ± 10 nm and a solar-to-H<sub>2</sub>O<sub>2</sub> efficiency of 0.5%. This superior H<sub>2</sub>O<sub>2</sub> synthesis performance is attributed to efficient carrier mobility, high bulk charge carrier separation efficiency exceeding 70%, and the ability to directly promote water oxidation into H<sub>2</sub>O<sub>2</sub>. Additionally, 600 μmol L<sup>−1</sup> g<sub>cat</sub><sup>−1</sup> of H<sub>2</sub>O<sub>2</sub> can be continuously generated over the β-ZrNBr film without significant decay under visible light in a homemade flow cell. Our work offers a scalable alternative for H<sub>2</sub>O<sub>2</sub> production using robust inorganic semiconductors under ambient conditions.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"2 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic mixed-anion semiconductor photocatalysts are promising for water splitting due to their broad visible light absorption and structural stability. However, efficient photocatalytic production of hydrogen peroxide (H2O2) remains challenging. This study reports a one-step photocatalytic method for H2O2 production using the synthesized β-ZrNBr inorganic nanosheet photocatalyst, achieving an apparent quantum efficiency of 11.7% at 420 ± 10 nm and a solar-to-H2O2 efficiency of 0.5%. This superior H2O2 synthesis performance is attributed to efficient carrier mobility, high bulk charge carrier separation efficiency exceeding 70%, and the ability to directly promote water oxidation into H2O2. Additionally, 600 μmol L−1 gcat−1 of H2O2 can be continuously generated over the β-ZrNBr film without significant decay under visible light in a homemade flow cell. Our work offers a scalable alternative for H2O2 production using robust inorganic semiconductors under ambient conditions.

Abstract Image

H2O2在β-ZrNBr氮化卤化物纳米片上的高效光合作用
无机混合阴离子半导体光催化剂具有广泛的可见光吸收和结构稳定性,在水裂解方面具有广阔的应用前景。然而,高效的光催化生产过氧化氢(H2O2)仍然具有挑战性。本研究报道了一种利用合成的β-ZrNBr无机纳米片光催化剂一步光催化制H2O2的方法,在420±10 nm处的表观量子效率为11.7%,太阳能制H2O2效率为0.5%。这种优越的H2O2合成性能归功于高效的载流子迁移率,超过70%的高散装电荷载流子分离效率,以及直接促进水氧化成H2O2的能力。此外,在自制的流动池中,在可见光下,β-ZrNBr膜上可以连续产生600 μmol L−1 gcat−1的H2O2,且没有明显的衰减。我们的工作为在环境条件下使用坚固的无机半导体生产H2O2提供了可扩展的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信