Optimization of Na-doping enhancing the ionic conductivity for high electrochemical performance LiMnxFe1−xPO4 cathode

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Shan Liu , Kemu Liu , Fang Zhou , Hong Xiao , Qiang Wang , Kai Han
{"title":"Optimization of Na-doping enhancing the ionic conductivity for high electrochemical performance LiMnxFe1−xPO4 cathode","authors":"Shan Liu ,&nbsp;Kemu Liu ,&nbsp;Fang Zhou ,&nbsp;Hong Xiao ,&nbsp;Qiang Wang ,&nbsp;Kai Han","doi":"10.1016/j.electacta.2025.146436","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to its higher energy density and low cost, lithium manganese iron phosphate (LiMn<em>ₓ</em>Fe<sub>1−</sub><em><sub>x</sub></em>PO<sub>4</sub>) has emerged as a promising cathode material. However, the practical application of LiMn<em>ₓ</em>Fe<sub>1−</sub><em><sub>x</sub></em>PO<sub>4</sub> is hindered by its poor rate performance and cycle life, primarily because of its low electronic/ionic conductivity and the Jahn–Teller effect. Using a dry–wet hybrid solid-phase ball-milling method combined with in situ sodium doping at the lithium sites, this study explores the synthesis of LiMn<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub> -Na<em><sub>i</sub></em> composite cathodes. Sodium doping enhances the lattice spacing, improves lithium-ion diffusion coefficients, and stabilizes the lattice structure, thereby improving the cycling stability. The material with a sodium doping level of 0.008 shows optimal electrochemical performance, achieving discharge capacities of 146.8 and 93.9 mAh <em>g</em><sup>−1</sup> at 28 °C under current densities of 0.1 and 10 C, respectively. After 800 cycles at 1 C, the capacity retention is 95.3 %. Even at 45 °C, the material exhibits a discharge capacity of 103.6 mAh <em>g</em><sup>−1</sup> at 10 C with a capacity retention of 98.6 % after 2000 cycles. The results reveal that sodium doping is an effective modification method to enhance the performance of LiMn<em>ₓ</em>Fe<sub>1−</sub><em><sub>x</sub></em>PO<sub>4</sub> cathode.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"531 ","pages":"Article 146436"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625007984","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to its higher energy density and low cost, lithium manganese iron phosphate (LiMnFe1−xPO4) has emerged as a promising cathode material. However, the practical application of LiMnFe1−xPO4 is hindered by its poor rate performance and cycle life, primarily because of its low electronic/ionic conductivity and the Jahn–Teller effect. Using a dry–wet hybrid solid-phase ball-milling method combined with in situ sodium doping at the lithium sites, this study explores the synthesis of LiMn0.5Fe0.5PO4 -Nai composite cathodes. Sodium doping enhances the lattice spacing, improves lithium-ion diffusion coefficients, and stabilizes the lattice structure, thereby improving the cycling stability. The material with a sodium doping level of 0.008 shows optimal electrochemical performance, achieving discharge capacities of 146.8 and 93.9 mAh g−1 at 28 °C under current densities of 0.1 and 10 C, respectively. After 800 cycles at 1 C, the capacity retention is 95.3 %. Even at 45 °C, the material exhibits a discharge capacity of 103.6 mAh g−1 at 10 C with a capacity retention of 98.6 % after 2000 cycles. The results reveal that sodium doping is an effective modification method to enhance the performance of LiMnFe1−xPO4 cathode.

Abstract Image

Abstract Image

钠掺杂优化LiMnxFe1−xPO4阴极的离子电导率
磷酸锰铁锂(LiMnₓFe1−xPO4)具有较高的能量密度和较低的成本,是一种很有前途的正极材料。然而,LiMnₓFe1−xPO4的实际应用受到其较差的倍率性能和循环寿命的阻碍,主要是由于其低电子/离子电导率和Jahn-Teller效应。本研究采用干湿混合固相球磨法结合锂离子原位钠掺杂,探索了LiMn0.5Fe0.5PO4 -Nai复合阴极的合成。钠的掺杂增强了晶格间距,提高了锂离子扩散系数,稳定了晶格结构,从而提高了循环稳定性。当钠掺杂量为0.008时,材料表现出最佳的电化学性能,在28℃、0.1和10℃的电流密度下,放电容量分别达到146.8和93.9 mAh g−1。在1℃下循环800次后,容量保持率为95.3%。即使在45℃下,该材料在10℃下的放电容量为103.6 mAh g−1,在2000次循环后容量保持率为98.6%。结果表明,钠掺杂是提高LiMnₓFe1−xPO4阴极性能的有效改性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信