Biological markers and psychosocial factors predict chronic pain conditions

IF 21.4 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES
Matt Fillingim, Christophe Tanguay-Sabourin, Marc Parisien, Azin Zare, Gianluca V. Guglietti, Jax Norman, Bogdan Petre, Andrey Bortsov, Mark Ware, Jordi Perez, Mathieu Roy, Luda Diatchenko, Etienne Vachon-Presseau
{"title":"Biological markers and psychosocial factors predict chronic pain conditions","authors":"Matt Fillingim, Christophe Tanguay-Sabourin, Marc Parisien, Azin Zare, Gianluca V. Guglietti, Jax Norman, Bogdan Petre, Andrey Bortsov, Mark Ware, Jordi Perez, Mathieu Roy, Luda Diatchenko, Etienne Vachon-Presseau","doi":"10.1038/s41562-025-02156-y","DOIUrl":null,"url":null,"abstract":"<p>Chronic pain is a multifactorial condition presenting significant diagnostic and prognostic challenges. Biomarkers for the classification and the prediction of chronic pain are therefore critically needed. Here, in this multidataset study of over 523,000 participants, we applied machine learning to multidimensional biological data from the UK Biobank to identify biomarkers for 35 medical conditions associated with pain (for example, rheumatoid arthritis and gout) or self-reported chronic pain (for example, back pain and knee pain). Biomarkers derived from blood immunoassays, brain and bone imaging, and genetics were effective in predicting medical conditions associated with chronic pain (area under the curve (AUC) 0.62–0.87) but not self-reported pain (AUC 0.50–0.62). Notably, all biomarkers worked in synergy with psychosocial factors, accurately predicting both medical conditions (AUC 0.69–0.91) and self-reported pain (AUC 0.71–0.92). These findings underscore the necessity of adopting a holistic approach in the development of biomarkers to enhance their clinical utility.</p>","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":"21 1","pages":""},"PeriodicalIF":21.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Human Behaviour","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41562-025-02156-y","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic pain is a multifactorial condition presenting significant diagnostic and prognostic challenges. Biomarkers for the classification and the prediction of chronic pain are therefore critically needed. Here, in this multidataset study of over 523,000 participants, we applied machine learning to multidimensional biological data from the UK Biobank to identify biomarkers for 35 medical conditions associated with pain (for example, rheumatoid arthritis and gout) or self-reported chronic pain (for example, back pain and knee pain). Biomarkers derived from blood immunoassays, brain and bone imaging, and genetics were effective in predicting medical conditions associated with chronic pain (area under the curve (AUC) 0.62–0.87) but not self-reported pain (AUC 0.50–0.62). Notably, all biomarkers worked in synergy with psychosocial factors, accurately predicting both medical conditions (AUC 0.69–0.91) and self-reported pain (AUC 0.71–0.92). These findings underscore the necessity of adopting a holistic approach in the development of biomarkers to enhance their clinical utility.

Abstract Image

生物标记和社会心理因素预测慢性疼痛状况
慢性疼痛是一种多因素的疾病,具有重要的诊断和预后挑战。因此,对慢性疼痛进行分类和预测的生物标志物是非常必要的。在这项超过523,000名参与者的多数据集研究中,我们将机器学习应用于来自英国生物银行的多维生物数据,以识别与疼痛相关的35种医学病症(例如,类风湿性关节炎和痛风)或自我报告的慢性疼痛(例如,背痛和膝盖疼痛)的生物标志物。来自血液免疫分析、脑和骨成像以及遗传学的生物标志物在预测与慢性疼痛相关的医疗状况(曲线下面积(AUC) 0.62-0.87)方面有效,但在预测自我报告的疼痛(AUC 0.50-0.62)方面无效。值得注意的是,所有生物标志物都与社会心理因素协同工作,准确预测医疗状况(AUC 0.69-0.91)和自我报告的疼痛(AUC 0.71-0.92)。这些发现强调了采用整体方法开发生物标志物以增强其临床效用的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Human Behaviour
Nature Human Behaviour Psychology-Social Psychology
CiteScore
36.80
自引率
1.00%
发文量
227
期刊介绍: Nature Human Behaviour is a journal that focuses on publishing research of outstanding significance into any aspect of human behavior.The research can cover various areas such as psychological, biological, and social bases of human behavior.It also includes the study of origins, development, and disorders related to human behavior.The primary aim of the journal is to increase the visibility of research in the field and enhance its societal reach and impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信