{"title":"Discovery of potent substrate-type lysine methyltransferase G9a inhibitors for the treatment of sickle cell disease","authors":"Yosuke Nishigaya , Shohei Takase , Tatsunobu Sumiya , Ko Kikuzato , Takashi Hiroyama , Yuki Maemoto , Komei Aoki , Tomohiro Sato , Hideaki Niwa , Shin Sato , Kentaro Ihara , Akiko Nakata , Seiji Matsuoka , Noriaki Hashimoto , Ryosuke Namie , Teruki Honma , Takashi Umehara , Mikako Shirouzu , Hiroo Koyama , Yukio Nakamura , Fumiyuki Shirai","doi":"10.1016/j.ejmech.2025.117721","DOIUrl":null,"url":null,"abstract":"<div><div>Structurally novel inhibitors of the lysine methyltransferase G9a have attracted considerable interest as potential drug candidates for cancer and genetic diseases. Here, a detailed account of potency optimization from early leads <strong>8</strong> and <strong>9</strong> to compound <strong>16g</strong> is presented. Our search for an alternative scaffold for the 4-oxo-4,5,6,7-tetrahydro-1<em>H</em>-indole moiety of compounds <strong>8</strong> and <strong>9</strong> via parallel synthesis led to the identification of the 4-pyridin-4-ylamino phenyl substructure in compound <strong>16g</strong>. This substructure was found to bind to the enzyme in a horizontally flipped manner compared with compound <strong>8</strong> in X-ray crystallographic analysis.</div><div>Compound <strong>16g</strong> is a highly potent G9a inhibitor (IC<sub>50</sub> = 0.0020 μM) and structurally distinct from other G9a inhibitors reported in the literature. Importantly, compound <strong>16g</strong> exhibited dose-dependent induction of γ-globin mRNA in HUDEP-2, leading to elevated γ-globin protein levels and F cell numbers in CD34<sup>+</sup> bone marrow (BM)‒derived hematopoietic cells. Kinetic studies using surface plasmon resonance (SPR) analysis suggested that compound <strong>16g</strong> interacts with G9a via a unique binding mode, as indicated by the markedly higher dissociation constant (K<sub>D</sub>) compared to those of compounds <strong>8</strong> and <strong>9</strong>. Interestingly, X-ray crystallographic studies revealed that the binding motif of compound <strong>16g</strong> was quite different from our previous series, including RK-701, and somewhat resembles that of endogenous substrates. Insights obtained in this lead optimization exercise on the association/dissociation constants as well as the binding motifs are expected to help in designing future G9a inhibitors for the treatment of sickle cell disease.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"293 ","pages":"Article 117721"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523425004866","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Structurally novel inhibitors of the lysine methyltransferase G9a have attracted considerable interest as potential drug candidates for cancer and genetic diseases. Here, a detailed account of potency optimization from early leads 8 and 9 to compound 16g is presented. Our search for an alternative scaffold for the 4-oxo-4,5,6,7-tetrahydro-1H-indole moiety of compounds 8 and 9 via parallel synthesis led to the identification of the 4-pyridin-4-ylamino phenyl substructure in compound 16g. This substructure was found to bind to the enzyme in a horizontally flipped manner compared with compound 8 in X-ray crystallographic analysis.
Compound 16g is a highly potent G9a inhibitor (IC50 = 0.0020 μM) and structurally distinct from other G9a inhibitors reported in the literature. Importantly, compound 16g exhibited dose-dependent induction of γ-globin mRNA in HUDEP-2, leading to elevated γ-globin protein levels and F cell numbers in CD34+ bone marrow (BM)‒derived hematopoietic cells. Kinetic studies using surface plasmon resonance (SPR) analysis suggested that compound 16g interacts with G9a via a unique binding mode, as indicated by the markedly higher dissociation constant (KD) compared to those of compounds 8 and 9. Interestingly, X-ray crystallographic studies revealed that the binding motif of compound 16g was quite different from our previous series, including RK-701, and somewhat resembles that of endogenous substrates. Insights obtained in this lead optimization exercise on the association/dissociation constants as well as the binding motifs are expected to help in designing future G9a inhibitors for the treatment of sickle cell disease.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.